
EXPERIMENTS IN RIGHTS CONTROL

EXPRESSION AND ENFORCEMENT

Cheun Ngen Chong

Members of the dissertation committee:

prof. dr. P. H. Hartel University of Twente (promoter)
dr. S. Etalle University of Twente (assistant promoter)
prof. dr. W. Jonker University of Twente
prof. ir. E. Michiels University of Twente
prof. dr. W. G. Vree Delft University of Technology
dr. ir. W. B. Teeuw Telematica Instituut
prof. dr. P. M. G. Apers University of Twente (chair)

University of Twente, P.O. Box 217, 7500 AE
Enschede, The Netherlands.
Internet: http://www.utwente.nl
This thesis is included in the CTIT Ph.D.-
thesis Series.
ISSN 1381-3617.
Internet: http://www.ctit.utwente.nl

This thesis is published in the Telematica In-
stituut Fundamental Research Series.
ISSN 1388-1795.
Telematica Instituut, P.O. Box 589, 7500 AN
Enschede, The Netherlands
E-mail: info@telin.nl
Internet: http://www.telin.nl

This thesis is also published in the IPA Dis-
sertation Series.
Eindhoven University of Technology, Room
HG 7.22, Den Dolech 2, Eindhoven, The
Netherlands.
Internet: http://www.win.tue.nl/ipa/

This thesis was edited with Vim and typeset with LATEX.
Keywords: rights control, digital rights management, license, rights expression
language, rights enforcement, tamper-resistance

Cover Design Studio Oude Vrielink, Losser and Jos Hendrix, Groningen
Book Design Lidwien van de Wijngaert and Henri ter Hofte
Printing Universal Press, Veenendaal, The Netherlands

Copyright c© 2005, C.N. Chong, Enschede, The Netherlands
All rights reserved. Subject to exceptions provided for by law, no part of this
publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior written permission of the copyright owner. No part
of this publication may be adapted in whole or in part without the prior written
permission of the author.
CTIT Ph.D.-Thesis Series Number: 05-68
IPA Series Number: UT.2005-03
TI Series Number: 013
ISBN 90-75176-40-6 TI/FRS/013

EXPERIMENTS IN RIGHTS CONTROL

EXPRESSION AND ENFORCEMENT

DISSERTATION

to obtain
the doctor’s degree at the University of Twente,

on the authority of the rector magnificus,
prof. dr. W. H. M. Zijm,

on account of the decision of the graduation committee,
to be publicly defended

on Friday, February 4, 2005 at 13.15

by

Cheun Ngen Chong

born on 25 March 1977,

in Kuala Lumpur, Malaysia

This dissertation is approved by:

prof. dr. Pieter H Hartel (promoter) and
dr. Sandro Etalle (assistant-promoter)

For my family
In memory of my dearest grandmother...

ABSTRACT

The Internet has transformed our long-term perception on working, enter-
tainment, and living rapidly. We can now work comfortably in our own
home, shop for our groceries without stepping outside the house, and en-
joy high-quality entertaining digital content, such as music or film. This
digital content can easily be produced and copied with available digital
technologies; and the content can be distributed and shared through the
Internet almost effortlessly. This phenomenon has created a wide variety
of usage scenarios, and has also induced huge loss to the film and music
industry through piracy. To solve this problem, we have to protect the
digital content by controlling how the users are using the content. Thus,
rights control has emerged as a potential solution.

A myriad of technical, social, and legal questions related to rights con-
trol have appeared. For instance: How can we control the way in which
digital content is used? How can we guarantee that users abide by our
rules when using the digital content? And, how can we allow users to use
the content anyway they like without violating our rules?

This thesis addresses the aforementioned questions by performing a
series of experiments, which consist of (1) studying available and novel
usage scenarios; (2) deriving the requirements of rights control from the
scenarios; (3) proposing the design of a language and its implementation
architecture for rights control based on the requirements; (4) building pro-
totypes that serve as proof-of-concept for aspects of the design; and finally

iii

Abstract

(5) performing various evaluations on these prototypes to justify the prac-
ticality of the design.

Several contributions are made from two aspects, namely rights ex-
pression and rights enforcement:

An experimental logic-based rights expression language (REL), namely
LicenseScript is proposed. LicenseScript is based on logic programming
and multiset rewriting. The language has a simple but elegant syntax,
which provides fine-grained control over the digital content; and, it has
rich formal semantics, which can be used to verify useful properties.

• A wide variety of usage scenarios are studied and implemented in
LicenseScript. A thorough comparison of LicenseScript with other
available XML-based RELs is conducted in the usage scenarios.
This shows that LicenseScript is highly expressive and flexible.

• Fair Use (United States Codes, U.S.C, Section 107 Title 17 Chap-
ter 1, Fair Use Doctrine) is modelled in LicenseScript. Fair Use
is useful in expressing the end-user’s usage rights, which are legal
from the copyright perspective, but might not allowed by the content
providers initially. This shows another advantage of LicenseScript.

A rights enforcement architecture that implements LicenseScript is
proposed. This architecture is composed of several security modules achiev-
ing different objectives that support rights control:

• An experimental digital rights management (DRM) system, which
implements rights control is built. The system is able to associate
the user’s identity, and other security attributes, e.g. user’s role to
the rights of using the digital content. A prototype is created and
its performance is evaluated. An analysis is provided using a SPIN
model.

• A LicenseScript license interpreter is designed and built by using
state-of-the-art software tools. It is able to interpret, execute and
alter the LicenseScript licenses.

• A secure audit logging protocol is proposed, which refines Schneier
and Kelsey’s protocol by incorporating a tamper-resistant token.

iv EXPERIMENTS IN RIGHTS CONTROL

Abstract

The protocol is able to detect unauthorized deletion, manipulation
or creation of the audit logs. The protocol has been implemented in
a real system, and its performance has been assessed.

• A license protection scheme based on a key tree and a tamper-
resistant hardware token is proposed. The scheme is able to protect
and enforce different usage rights on different parts of a license or
content flexibly. This scheme has been implemented in a prototype.
Several tests have been done on the prototype to adjust the practi-
cality, and the protocol has been formally verified using CoProVe.

• An experimental streaming audio protection approach, i.e., StreamTo
is proposed. The StreamTo player is able to play the protected audio
piecemeal. A hardware token decrypts the protected audio frame by
frame. Two prototypes based on two different hardware tokens are
built, and their performance is evaluated and compared.

EXPERIMENTS IN RIGHTS CONTROL v

SAMENVATTING

Het internet heeft onze lange-termijn visie op werk, entertainment en leven
snel veranderd. We kunnen nu comfortabel thuis werken, onze boodschap-
pen doen zonder de deur uit te hoeven, en genieten van hoogwaardig dig-
itale aanbod zoals muziek of film. Dit digitaal aanbod kan gemakkelijk
worden geproduceerd en gekopieerd met beschikbare digitale technieken;
en de inhoud kan moeiteloos gedistribueerd en gedeeld worden via inter-
net. Dit fenomeen heeft gezorgd voor een grote diversiteit aan gebruikss-
cenarios, en heeft tevens een groot verlies aan inkomsten veroorzaakt bij
de film- en muziekindustrie door piraterij. Om dit probleem op te lossen
moeten we het digitale aanbod beschermen door te controleren hoe de ge-
bruikers de inhoud gebruiken. Zodanig is controle van rechten als een
mogelijke oplossing naar voren gekomen.

Een scala technische, sociale en juridische vraagstukken gerelateerd
aan de controle van rechten zijn ontstaan. Bijvoorbeeld: hoe kunnen we
de manier waarop digitaal aanbod wordt gebruikt controleren? Hoe kun-
nen we garanderen dat gebruikers de regels respecteren van ons digitale
aanbod? Hoe kunnen we de gebruikers toestaan het digitale aanbod naar
eigen believen te gebruiken zonder dat zij onze regels overtreden?

Dit proefschrift behandelt de bovengenoemde vragen door middel van
het uitvoeren van een aantal experimenten, die bestaan uit (1) een studie
van beschikbare en “novel usage” scenarios; (2) het afleiden van vereis-
ten voor controle van rechten vanuit de scenarios; (3) het voorstellen van

vii

Samenvatting

een taalontwerp en de implementatie van een architectuur voor controle
van rechten op basis van de vereisten; (4) het bouwen van prototypes die
dienen als “proof-of-concept” voor de ontwerpen; en tot slot (5) het uitvo-
eren van verschillende evaluaties van deze prototypes om het praktisch
aspect van het ontwerp te rechtvaardigen.

De bijdragen van dit proefschrijft zijn te verdelen in twee categorieën,
namelijk “rechten uitdrukking” en “rechten naleving”:

Een experimentele op logica gebaseerde “rights expression” taal (REL),
namelijk LicenceScript, wordt voorgesteld. LicenceScript is gebaseerd op
logisch programmeren en “multiset” herschrijven. De taal heeft een een-
voudige doch elegante syntaxis, die kan zorgen voor een verfijnde controle
op het digitale aanbod; en hij heeft een rijke formele semantiek, die ge-
bruikt kan worden om een bruikbare eigenschappen te controleren.

• Een grote variëteit aan gebruiksscenarios wordt bestudeerd en gëim-
plementeerd in LicenceScript. Een grondige vergelijking tussen Li-
cenceScript en andere beschikbare op XML gebaseerde REL wordt
verwerkt in de gebruiksscenarios. Dit laat zien dat LicenceScript
uitermate expressief en flexibel is.

• Een bruikbare copyright wet, namelijk “Fair Use” (United States
Codes, U.S.C, Section 107 Title 17 Chapter 1, Fair Use Doctrine)
wordt behandeld in LicenceScript. Fair Use is handig in het uit-
drukken van de eindgebruikers gebruiksrechten, dat legaal is vanuit
het perspectief van copyright maar initieel misschien niet is toeges-
taan door de contentaanbieders. Dit toont een ander voordeel van
LicenceScript aan.

Een architectuur gericht op het naleven van rechten, die LicenceScript
implementeerd wordt voorgesteld. Deze architectuur wordt samengesteld
uit verschillende veiligheidsmodules die resulteren in verschillende doel-
stellingen die controle op rechten ondersteunen:

• Een experimenteel Digital Rights Management (DRM) systeem, dat
rechten controle implementeerd, wordt gebouwd. Het systeem is in
staat de gebruikers identiteit, en andere veiligheidsonderdelen zoals
de gebruikers rol, te koppelen aan het recht om de digitale aanbod te

viii EXPERIMENTS IN RIGHTS CONTROL

Samenvatting

gebruiken. Een prototype wordt gecreerd en de performance geval-
ueerd. Een analyse wordt aangeboden door gebruik van een SPIN
model.

• Een LicenceScript vergunning interpreter is gecreëerd en gebouwd
door gebruik te maken van state-of-the-art software middelen. Deze
is in staat de LicenceScript vergunning te interpreteren, uit te voeren
en te veranderen.

• Een beveiligde “audit logging protocol” wordt voorgesteld, dat Sch-
neier en Kelsey’s protocol verfijnd door het incorporeren van een
“tamper-resistant” token. Het protocol is in staat ongeautoriseerd
verwijderen, manipulatie of creatie van de “audit logs” te detecteren.
Het protocol is geı̈mplementeerd in een echt systeem en de perfor-
mance is beoordeeld.

• Een beschermingsschema voor de license wordt voorgesteld gebaseerd
op een “key tree” en “tamper-resistant hardware token”. Het schema
is in staat verschillende gebruiksrechten op verschillende delen van
een license of aanbod flexibel te beschermen. Het schema is ge-
ı̈mplementeerd in een prototype. Diverse tests zijn op het prototype
uitgevoerd om het praktische aspect aan te passen en het protocol is
formeel geverifieerd aan de hand van CoProVe.

• Een experimentele benadering van de bescherming van streaming
audio, nl. StreamTo, wordt voorgesteld. De StreamTo-player is in
staat de beveiligde audio in stukken (packets) af te spelen. Een
hardware-token ontcijfert de beveiligde audio frame voor frame.
Twee prototypes gebaseerd op twee verschillende hardware-tokens
worden gebouwd, en de performance wordt geëvalueerd en vergeleken.

EXPERIMENTS IN RIGHTS CONTROL ix

ACKNOWLEDGEMENTS

Finally, I am here, finishing my own thesis. The typos and grammar mis-
takes later discovered in the thesis will only be treated as special features
of my thesis.

I consider myself extremely lucky for this opportunity of working in
the academic and (partly) industrial area simultaneously, despite the fact
that a Ph.D. is sometimes too pressurizing. I feel that I have grown a lot
in these 4 years, technically and mentally. Not to mention that I have im-
proved physically too, thanks to the habitual gymnastic, fitness and swim-
ming schedule, which I follow almost daily to relax from the stress. What
makes me most grateful is that I am actually surrounded by friends and
colleagues. Their kindness, support, and constant help makes me feel less
alone fighting for the Ph.D. I would like to name a few of them here.

First of all, I would like to show my deepest gratitude to my daily
supervisor, Pieter Hartel. He carried out his supervision with great dedi-
cation. His optimism, enthusiasm, and problem-solving capability never
stopped to amaze me. His help and support is really what motivates me.
He reads everything I have written, and corrects every mistake. His speed
and thoroughness is what we, the Ph.D. students are always fascinated by.
He is a busy professor, yet his door is always open for his students. Fur-
thermore, he never feels tired after a busy working day, and step into the
Ph.D. student’s room asking, “anything you need my help with”. I actu-
ally have learned a lot from him in handling social interaction with other

xi

Acknowledgements

members as for teamwork. I am very grateful he did not give up on me,
when I had almost given up on myself.

Sandro Etalle, who is my second supervisor, has been helping me con-
stantly to alleviate my daily worries and stress. He is extremely busy ev-
eryday, yet he does not mind spending evening time, after a 10-hour busy
working hours, to discuss my progress. His gentle and humble manner –
he is never reluctant to apologize whenever he has made a mistake (which
rarely happens) – incentivizes me to work harder.

Yee Wei Law has been my house-mate for nearly 4 years (we actually
have known each other for almost 8 years now). My “don’t-care” atti-
tude in the house must have bothered him a lot, yet he seldom makes any
much complaints. On the other hand, he has done all the cleaning and
management of the house. What amazes me the most is his enthusiasm in
learning new stuff, and his never-tired attitude. Furthermore, his patience
in sharing his knowledge with me is unbelievable.

Ricardo Corin always supports me in a subtle way. His intelligence
is what I admire the most, as well as his industrious manner. He never
hesitates to share his intellectual knowledge with me. I certainly have
learned a lot in doing research and handling some social issues from him.
More importantly, I certainly appreciate and will miss his sense of humour,
which always makes the office full of laughter.

Nikolay Kavaldjiev has inspired me a lot in handling some difficulties
in a daily life. He can handle most emergencies without any sweat. Fur-
thermore, he always accompanies me to the daily gymnastic and fitness
activities. Talking to him about my project sometimes can clear up the
mist in my mind.

Vasughi Sundramoorthy is my fellow Malaysian colleague (same as Y.
W. Law). She is a funny and caring friend, with a lot of energy. We always
talk about the plans for our own future, and it is quite inspiring.

Gabriele Lenzini has become my office room-mate since September
2004. He is really a great room-mate. He is quiet, considerate, and ex-
tremely patient – he has never made any complaints to whatever I have
done that might have bothered him. He does not mind at all sharing his
experience in life with me.

Jeroen Doumen has been extremely helpful to me. Even if we have
been colleagues for only one year, he is never reluctant to provide all kinds

xii EXPERIMENTS IN RIGHTS CONTROL

Acknowledgements

of valuable help.
René van Buuren and other Telematic Institute members have con-

tributed to the SUMMER and LicenseScript projects. René, especially,
has given me unexpected support not only in the projects, but also in my
Ph.D., at a time when I had doubts about beginning the Ph.D.

Geert Kleinhuis, Nico Zornig, Igor Passchier, Rieks Joosten and other
TNO Telecom members have been very helpful in working with me on the
RGE project (Geert has also helped me in the SUMMER project). Without
them, it would have been impossible for me to finish my project smoothly.

Lodewijk Smit has shared his experience and tricks in writing the the-
sis with me. Thus, he has helped me a lot in planning and writing the
thesis.

Marlous Weghorst is our secretary. She has helped me a lot in the
bureaucratic matters, such as filling in forms, booking flight tickets for
conferences, and other non-trivial daily business. Her helpful and cheerful
mood always makes the office more a home.

Ruth Griepink has been helping me with my English for about 6 months.
Her patience and guidance have improved my English writing skill for
writing this thesis.

Frederik Zuidberg always listens to my complaints and problems pa-
tiently. He is really one of the most important friends whom I must thank
wholeheartedly. His tireless support has really helped me get through
some of the depressing and disappointing moments.

Michael Soon Xin Ng is my friend from University of Southampton.
He has become my mentor since the first day we have known each other.
His indomitable spirit always reminds me never to give up because there
is always a way.

Peter Henderson, from the University of Southampton provided me
various support to start my Ph.D. at Southampton.

Lajos Hanzo, also from University of Southampton has supervised my
Bachelor final year project. His patient guidance has inspired my interest
in doing a Ph.D.

I thank my high-school old-time friends, namely Lee Lan Lim, Yong
Peng Cham, Kim Tee Koh, Lee Kun Tay, and Poh Ying Hip for their
hospitality when I spend my vacation back in Malaysia; and, their support
when I worked in Netherlands. Also, I want to thank the MSc students

EXPERIMENTS IN RIGHTS CONTROL xiii

Acknowledgements

who have been working hard for me. They are Zhonghong Peng, Bin Ren
and Jieyin Cheng.

Moki provides me with what I need to work at full speed everyday.
She never complains when I ask for more spirit-mover from her. She is
quite, kind and beautiful. Frankly, without her I would not have enough
energy to work throughout the day. She is a lovely coffee machine we
have in our office.

Last but not least, I would like to share my success with my family in
Malaysia. My parents have given me all the freedom to decide what I liked
to do in my future. Without their support, I would not have finished the
Ph.D.. I would like to thank my grandmother especially. I always regret
that I could not see her before she passed away when I was in my third
year undergraduate degree. She asked my parents to hide her illness from
me on the phone because she knew I was having my final examinations.
Without her unselfish love, I would never imagine that I could reach that
far in my life.

xiv EXPERIMENTS IN RIGHTS CONTROL

CONTENTS

Abstract iii

Samenvatting vii

Acknowledgements xi

List of Figures xxi

List of Tables xxv

I Prologue 1

1 Introduction 11
1.1 Access Control . 12

1.1.1 Mechanisms . 14
1.2 Usage Control . 14

1.2.1 UCONABC . 17
1.3 Rights Control . 19

1.3.1 LicenseScript . 20
1.3.2 Implementing UCONABC in LicenseScript 23

1.4 Complexity . 24
1.5 Summary . 28

xv

CONTENTS

II Rights Expression Languages 29

2 LicenseScript 35
2.1 Introduction . 36
2.2 Language . 37

2.2.1 Preliminaries . 38
2.2.2 Licenses . 38
2.2.3 The Rules . 41
2.2.4 LicenseScript Execution Model 42

2.3 Electronic Music Distribution 44
2.3.1 Authorized Domains 44
2.3.2 Payment . 45

2.3.2.1 Modelling a Wallet 46
2.3.2.2 Payment Methods 46

2.3.3 Clipping Licenses 49
2.4 Related Work . 50
2.5 Conclusions and Future Work 52

3 Usage Scenarios 53
3.1 Introduction . 54
3.2 Anatomy of RELs . 55

3.2.1 Components . 56
3.2.2 Relations . 58
3.2.3 Models . 59

3.3 LicenseScript Language 61
3.4 XML-based RELs Scenarios 64
3.5 Novel Scenarios . 69

3.5.1 Project Document Sharing 69
3.5.2 Licenses Evolution Modelling 72

3.6 Conclusions and Future Work 75

4 Copyright Approximation 77
4.1 Introduction . 78
4.2 Our Approach . 80

4.2.1 Rights Assertion 81
4.2.2 Audit Logging 82

4.3 LicenseScript Language 83

xvi EXPERIMENTS IN RIGHTS CONTROL

CONTENTS

4.4 Fair Use in LicenseScript 86
4.4.1 The license 87
4.4.2 The record . 88
4.4.3 The doctrine 88
4.4.4 The rules . 89

4.5 Related Work . 91
4.6 Conclusion and Future Work 93

III Rights Enforcement Mechanisms 95

5 Identity–Attribute–Rights 101
5.1 Introduction . 102
5.2 The Idea . 103

5.2.1 Certificates and License 104
5.2.2 Association of authorities 106

5.3 Related Work . 106
5.4 Prototype: SUMMER . 108

5.4.1 Performance Evaluation 111
5.4.2 SPIN model . 114

5.5 Conclusions and Future Work 117

6 LicenseScript Interpreter 123
6.1 Introduction . 124
6.2 RGE Infrastructure . 125

6.2.1 CC Model . 126
6.3 LicenseScript Derivation 130

6.3.1 Deriving Licensescript 131
6.3.1.1 Objects 132
6.3.1.2 Clauses 132
6.3.1.3 Rules 134

6.3.2 Service Requirements Validation 135
6.4 RGE Demonstrator . 136
6.5 Related Work . 139

6.5.1 Web Service Management 139
6.5.2 Service Brokerage 140

6.6 Conclusions and Future Work 140

EXPERIMENTS IN RIGHTS CONTROL xvii

CONTENTS

7 Secure Audit Logging 143
7.1 Introduction . 144
7.2 Related Work . 147
7.3 The Protocols . 148

7.3.1 P1 . 149
7.3.2 P2 . 150

7.4 SK Refinement . 152
7.5 Performance Analysis . 154
7.6 Conclusions and Future Work 156

8 License Protection 157
8.1 Introduction . 158
8.2 Security Requirements 159
8.3 LicenseScript License . 160
8.4 License Protection Scheme 161

8.4.1 Protected Storage Mechanisms 162
8.4.2 Protected License 164
8.4.3 Protocols . 165
8.4.4 Formal Protocol Verification 170
8.4.5 Security Analysis 171

8.5 Prototype . 171
8.6 Performance Evaluation 173

8.6.1 Test 1: Level of the Key Tree 173
8.6.2 Test 2: License Reconstruction 174

8.7 Related Work . 177
8.8 Conclusions and Future Work 178

9 Streaming Audio Protection 181
9.1 Introduction . 181
9.2 CAS and SM . 184
9.3 StreamTo . 186

9.3.1 Keys . 187
9.3.2 Encryption Process 188
9.3.3 Decryption Process 190

9.4 Security Analysis . 191
9.4.1 Analog and Digital Hole 191

xviii EXPERIMENTS IN RIGHTS CONTROL

CONTENTS

9.4.2 Streaming Theft 192
9.4.3 Jugular Attack . 193
9.4.4 Cloning . 193

9.5 Prototype . 194
9.5.1 Architecture . 194
9.5.2 Implementation 196

9.6 Performance Assessment 196
9.6.1 Content Key Size 197
9.6.2 Sample Bit Rate 197

9.7 Related Work . 200
9.7.1 Content Protection Approach 200
9.7.2 Trusted Platform 201

9.8 Conclusions and Future Work 201

IV Epilogue 203

10 Conclusions and Future Work 205
10.1 Principles of Rights Control 205
10.2 Future Research . 209

Bibliography 213

Index 227

EXPERIMENTS IN RIGHTS CONTROL xix

LIST OF FIGURES

1 The structure of the thesis, shown as an entity-relationship
diagram. 3

1.1 The fundamental model of access control, showing that
the reference monitor decides the rights on the object for
the subject. The decision depends on the attributes of the
subjects and objects, and authorization rules. 13

1.2 The usage control model components. 15
1.3 The rights control model. 19
1.4 Logic representation of Alice’s capabilities shown in Ta-

ble 1.4. 31
1.5 Logic representation of access control list of File X shown

in Table 1.5. 31
1.6 Application domain covered by access control language

(light gray box), usage control language (dark gray box)
and rights control language (dark box). 31

1.7 The Binder encoding of the access control matrix Table 1.3. 32

2.1 The transformation of licenses with content and bindings
in a multiset caused by rules. 39

3.1 The components and their relations in a REL. 56

xxi

LIST OF FIGURES

3.2 Transformation of licenses with content and bindings caused
by rules. 61

3.3 A timing diagram of rights (real-time) concurrent activi-
ties in the document sharing system. 71

3.4 A state chart of an example of license evolution in this
scenario. 73

4.1 Our approach to approximating fair use. 80
4.2 Transformation of licenses. 83
4.3 Objectives of tamper-resistant design approaches. 97
4.4 The architecture for LicenseScript. 99

5.1 The overview architecture of SUMMER. 109
5.2 Scaled time needed for content protection as a function

of the number of users activating the content encryption
simultaneously. 113

5.3 Network with a Producer, three Thieves and two Con-
sumers showing arrows in the direction of Request mes-
sage flow; License and Content messages flow in the op-
posite direction. 114

6.1 The service management architecture of the RGE. 126
6.2 Three of the many CC models of the RGE service man-

agement infrastructure. 127
6.3 Configuration of the RGE demonstrator software compo-

nents. 136
6.4 The LicenseScript Interpreter user interface. 137
6.5 A dialog showing that the demands and the characteristics

of the service do not match. 138
6.6 The RGE demonstrator. 138

7.1 Overview of the secure audit logging method. 148
7.2 The P1 protocol for generating the initial authentication

key A0 and timestamp d from the iButton. 150
7.3 The P2 protocol of synchronizing the iButton real-time

clock and sending audit logs to the Server. 151

xxii EXPERIMENTS IN RIGHTS CONTROL

LIST OF FIGURES

7.4 An adversary views a protected document and steals the
key at time t = 4, during the logging process. 152

8.1 A license that restricts a broker to access a stock price un-
der 10 times. 162

8.2 Protected license of Figure 8.1, storing the storage keys
and the MAC. 162

8.3 Overall license protection architecture. 163
8.4 An example of key tree. 164
8.5 Protocol A – The hardware token, the application and the

license provider interact during the transmission of the
protected license and the public key of the application. . . 166

8.6 Protocol B – The application interacts with the token for
using the license. 168

8.7 The architecture and components of the reference imple-
mentation. 172

8.8 The procedure for measuring the time needed to perform
data decryption at different levels of the key tree. 174

8.9 The procedure for measuring the time needed to perform
data re-encryption on the token and reconstruction license
on the application, at different levels on the key tree. 174

8.10 The data transmission time from the application to iButton. 176

9.1 Three phases of content protection. 182
9.2 An abstract view of a conditional access system (CAS). . . 184
9.3 An abstract view of a streaming mechanism. 185
9.4 An abstract view of StreamTo. 186
9.5 Encryption of streaming content frame by frame at the

provider with a block of key stream, which is generated
from a different content key. 189

9.6 Decryption of encrypted streaming content frame by frame
with the key stream using the content keys, while playing
the decrypted frame. 191

9.7 Common security threats to content protection approach. . 192
9.8 Architectural Overview of the prototype. 195
9.9 The time required to decrypt the encrypted audio sample

frame by frame with the iButton and the CM-Stick. 199

EXPERIMENTS IN RIGHTS CONTROL xxiii

LIST OF FIGURES

10.1 The principles of rights control systems (Rights Control
Eight-Legged Stool). 206

xxiv EXPERIMENTS IN RIGHTS CONTROL

LIST OF TABLES

1.1 The descriptions and applications of the basic UCON mod-
els, corresponding to the decision factors (Authorizations,
oBligations, and Conditions) and continuity of usage con-
trol (pre and ongoing). 16

1.2 The 16 basic UCONABC models. 17
1.3 An example of an access control matrix. 29
1.4 Capabilities of subjects. 30
1.5 ACLs of object. 30

3.1 The properties of the usage scenarios specified in ODRL
and the novel scenarios (The symbol ‘3’ indicates the sce-
nario exhibits the corresponding feature). 65

3.2 The properties of the usage scenarios specified in XrML
(The symbol ‘3’ indicates the scenario exhibits the corre-
sponding feature). 66

3.3 The capabilities of XML-based RELs and LicenseScript
(LS) concluded from studying the usage scenarios. The
symbol ‘3’ indicates the REL contains the corresponding
feature. 68

6.1 The CC entities of the Service Model. 128
6.2 The relations between the entities of the Service Model. . . 128

xxv

LIST OF TABLES

6.3 The CC restrictions of the Service Model. 129
6.4 The LicenseScript objects representing CC entities, where

S represents the service; C denotes a set of clauses; and B
is a set of bindings. 132

6.5 The LicenseScript clauses that capture the relations in Ta-
ble 6.2 and the conditions of success for the restrictions in
Table 6.3. 133

8.1 The notation. 166

9.1 Comparison of CAS, SM and StreamTo with respect to the
characteristics of the content key. 186

9.2 The notation of the StreamTo protocols. 188
9.3 Comparison of the iButton and the CM-Stick. 195
9.4 Different sample bit rate, with different audio file size and

average frame size. 198

xxvi EXPERIMENTS IN RIGHTS CONTROL

Part I
PROLOGUE

The thesis explores the design and implementation of the rights ex-
pression language LicenseScript. A rights expression language (REL) is
intended to express usage rights on digital content. The implementation
interprets the language and carries out the actual rights enforcement.

Extensive research has been conducted to make the rights expression
language flexible, expressive and capable of providing fine-grained con-
trol on the digital content. However, the current rights expression lan-
guages are still limited in their ability to express dynamic features of rights
control. LicenseScript presents a major advance in this respect. We will
dwell on this in part II (pp.29).

The implementation of rights expression language presents many in-
teresting problems of its own. For example, the extent to which hardware
tamper-resistance is required. This will be addressed in part III (pp.95).

This part of the thesis provides an introduction to the thesis: aims and
objectives, goals, scope and results.

Aim and Objectives
Digital rights management (DRM) is one of the most prominent applica-
tions of rights control. DRM is a collection of technologies, which allow
the players on the content distribution value chain, e.g. content provider to
restrict the usage of the content in various way. The content provider and
the content consumer (end-user) are at opposite ends of the value chain.
There maybe more players involved, such as the content creator, content
publisher, content distributor, etc.

DRM raises a lot of questions, such as, how can the intellectual prop-
erty rights of the content owned by the creator be protected, how can the
benefits of all the players be taken care of on the content value chain, how
can a different business model generate revenue to the content provider,
distributor and other players on the value chain, etc.

1

The research questions we try to answer in the thesis are: How can we
control the way in which digital content is used? How can we guarantee
that the users abide by our rules (rules can be made by any player involved
on a value chain, depending on the business models) when using the digital
content? And, how can we allow the users to use the content anyway they
like without violating our rules?

The main aim of the thesis is finding the answers to these questions,
which we intend to achieve by pursuing the following objectives:

1. To provide an in-depth study of the two aspects of rights control,
i.e., rights expression and rights enforcement.

2. To design a flexible and expressive rights expression language.

3. To implement the language with a selection of rights enforcement
mechanisms based on using a hardware token (personal computers
are completely open and unable to offer sufficient protection).

Scope
Digital rights management is an experimental subject. No proven tech-
nology exists even though there are many, incompatible, proprietary solu-
tions. Most of these, if not all, are broken.

Therefore, we choose to perform experiments with novel language and
implementation features. In our experiments, we describe:

• Scenarios, showing why flexibility in rights expression is essential.

• Requirements, which are derived from the scenarios to give a de-
tailed account of language and implementation features.

• Design, proposing the language and implementation, which is based
on the requirements. We include formal analysis when appropriate.

• Prototypes, which serve as a proof-of-concept for aspects of the
design.

• Evaluations, which are performed on the prototypes, to show the
applicability of the design.

2 EXPERIMENTS IN RIGHTS CONTROL

Results
The main results of the thesis are:

1. An experimental logic-based rights expression language: Licens-
eScript. We show by comparing LicenseScript to its competitors
that LicenseScript is able to capture a large variety of digital con-
tent usage scenarios.

2. Several experimental security mechanisms to enforce the rights have
been implemented. These include audit logging, license storage and
streaming audio protection. In these security mechanisms, we make
use of a hardware token.

3. For each of the security mechanisms, we provide an evaluation to
show the appropriateness of the mechanisms to rights control.

Projects
The work described in the thesis has taken place in three industrial projects
(the black boxes) and three MSc projects (the dark gray boxes), as shown
in Figure 1:

Rights
Control

Expression
Enforcement

LicenseScript

specifies

facilitates

Residential
Gateway

Environment

uses

Secure
Multimedia

Retrival

Secure
Audit

Logging

Streaming
Audio

Protection

License
Protection

provides

implements

supports

protects

provides provides

provides

Figure 1: The structure of the thesis, shown as an entity-relationship diagram.

EXPERIMENTS IN RIGHTS CONTROL 3

• Secure Multimedia Retrieval: SUMMER was a Dutch national
project carried out with BTS-subsidy of the Ministry of Economic
Affairs. It ran from April 2000 until September 2002. The partners
of the SUMMER project include KPN Research, Center for Telem-
atics and Information Technology (CTIT) and Department of Elec-
trical Engineering of the University of Twente, Stichting V2 Lab,
AVV Department of the Ministry of Transport, and CWI National
Research Institute for Mathematics and Computer Science. The
SUMMER project focused on secure, effective and efficient retrieval
of multimedia data. Our part of the project focused on the imple-
mentation of rights control, which will be elaborated in chapter 5.

• LicenseScript: LicenseScript was partially funded by Telematica
Institute. The project ran from October 2002 to October 2004. The
goal of the LicenseScript project is to develop and demonstrate an
integrated framework for analysis and design of secure information
delivery system. Specifically, this project aims at the development
of a framework in which one can specify, analyze and enforce usage
rights. This will be elaborated in chapter 2.

• Residential Gateway Environment (RGE): The main objective of
this project is to perform research concerning intelligent Residential
Gateways. The project ran from March 2003 until February 2004.
In future, consumers at home can have access to a great diversity of
services via many different telecommunication networks by using
an integrated, open and transparent gateway. KPN Research (now
known as TNO Telecom) together with Philips Research, the techni-
cal universities of Eindhoven, Delft and Twente are performing the
project. Our part of the project is to use LicenseScript in the RGE to
facilitate service management and rights control. This is discussed
in chapter 6.

• MSc Projects (Hardware Token Application): We have supervised
three MSc projects, each of which contributes to part of the the-
sis. The main objectives of these projects are to develop security
mechanisms to protect the license and the content, and providing
enforcement support to rights control:

4 EXPERIMENTS IN RIGHTS CONTROL

– Secure Audit Logging: Audit logging is intended to record all
relevant actions on content, such as play or copy. Secure audit
logging is based on a set of protocols that are able to detect
unauthorized modification, fabrication, and deletion of audit
logs. Secure audit logging provides fundamental support for
the security of license protection and streaming audio protec-
tion. This is discussed in chapter 7.

– License Protection: A license carries usage rights and keys
to unlock the protected content. Therefore, the license re-
quires adequate protection. In this project, a license protec-
tion scheme for LicenseScript is proposed. It is able to en-
sure the confidentiality and integrity of the license or parts
thereof. This protection scheme also works with a hardware
token. This is discussed in chapter 8.

– Streaming Audio Protection: Content requires protection so
that rights enforcement can be realized. In this project, stream-
ing media is our focus. Similar to the two previous MSc projects,
in this project a protection scheme using a hardware token is
proposed. This is discussed in chapter 9.

Organization
In this section, we show how the thesis is divided into four parts. Each
part is composed of several chapters, each of which has been published in
a conference/workshop or a technical report.

In this (first) part of the thesis, there is one chapter:

• Chapter 1 (pp.11) provides the background to the thesis, i.e., a cate-
gorization of access control, usage control and rights control.

The remaining parts are also composed of several chapters:

• Part II (pp. 29) discusses rights expression languages. We propose
an experimental logic-based REL, namely LicenseScript. Three
chapters form this part”

EXPERIMENTS IN RIGHTS CONTROL 5

– Chapter 2 (pp.35) introduces the rights expression language
LicenseScript, which is based on multiset rewriting and logic
programming.

– Chapter 3 (pp.53) compares two XML-based RELs, namely
XrML and ODRL, with LicenseScript by exploring a number
of usage scenarios. We show that LicenseScript is more flexi-
ble and expressive than XML-based RELs.

– Chapter 4 (pp.77) shows that LicenseScript is able to model
fair use, as described by the United States Codes (U.S.C) Fair
Use Doctrine. Fair use allows end-users to use the content in a
manner that is not restricted by the content providers, as long
as the usage purpose is non-profit.

• Part III (pp. 95) discusses several experimental security mechanisms
that are needed by rights enforcement. We use a hardware token to
achieve audit logs, license protection and streaming media protec-
tion. Three chapters form this part:

– Chapter 5 (pp.101) provides a more detailed explanation of the
background by describing a digital rights management (DRM)
system. DRM is an application of rights control. In this chap-
ter, identification, authentication and authorization (IAA) for
rights control is addressed. Our DRM system has been built in
the context of the SUMMER project.

– Chapter 6 (pp.123) discusses an implementation of Licens-
eScript for the management of services. This is done in the
context of the RGE project.

– Chapter 7 (pp.143) discusses how we implement Schneier and
Kelsey’s secure audit logging protocol by using a hardware
token. Secure audit logging can detect unauthorized tampering
with audit logs.

– Chapter 8 (pp.157) explains how we can store LicenseScript
licenses in a hardware token. We can ensure the confidentiality
and integrity of the licenses.

6 EXPERIMENTS IN RIGHTS CONTROL

– Chapter 9 (pp.181) explains how we can protect streaming au-
dio, e.g. MP3 or WMA by using a hardware token. Thereby,
we can enforce usage rights on the streaming audio.

• Part IV (pp. 203) summarizes the thesis, provides concluding re-
marks and future research possibilities.

Publications
To conclude, in this section, we list our refereed conference and workshop
publications that constitute the core of the thesis, and further unrefereed
CTIT technical reports (most of which are submitted for publication).

Refereed Conference/Workshop Contributions
1 C. N. Chong, S. Etalle, P. H. Hartel, R. Joosten, and G. Kleinhuis. Ser-

vice Brokerage with Prolog. 7th International Conference on En-
terprise Information Systems (ICEIS 2005), 2005, pages To appear.
INSTICC Press.
(http://www.ub.utwente.nl/webdocs/ctit/1/000000f2.pdf)

2 C. N. Chong, B. Ren, J. Doumen, S. Etalle, P. H. Hartel, and R. Corin,
License Protection with a Tamper-Resistant Token. 5th Workshop
on Information Security Applications (WISA 2004), volume 3325 of
Lecture Notes in Computer Science, 2004, pages 224–238. Springer-
Verlag.
(http://www.ub.utwente.nl/webdocs/ctit/1/000000ff.pdf)

3 C. N. Chong, S. Etalle, P. H. Hartel, and Y. W. Law. Approximating Fair
Use in LicenseScript. In T. M. T. Sembok, H. B. Zaman, H. Chen,
S. R. Urs, and S. H. Myaeng, editors, 6th International Conference
of Asian Digital Libraries (ICADL’2003), volume 2911 of Lecture
Notes in Computer Science, 2003, pages 432–443, Springer-Verlag.
(http://www.ub.utwente.nl/webdocs/ctit/1/000000cf.pdf)

4 C. N. Chong, S. Etalle, and P. H. Hartel. Comparing Logic-based and
XML-based Rights Expression Languages. In R. Meersman and

EXPERIMENTS IN RIGHTS CONTROL 7

Z. Tari, editors, Proceedings of On The Move to Meaningful Inter-
net Systems 2003: OTM 2003 Workshops, volume 2889 of Lecture
Notes in Computer Science, 2003, pages 779–792, Springer-Verlag.
(http://www.ub.utwente.nl/webdocs/ctit/1/000000cd.pdf)

5 C. N. Chong, R. Corin, S. Etalle, P. H. Hartel, W. Jonker, and Y. W. Law.
LicenseScript: A novel digital rights language and its semantics. In
K. Ng, C. Busch, and P. Nesi, editors, 3rd International Conference
on Web Delivering of Music (WEDELMUSIC), 2003, pages 122–
129, IEEE Computer Society Press.
(http://www.ub.utwente.nl/webdocs/ctit/1/000000bf.pdf)

6 C. N. Chong, Z. Peng, and P. H. Hartel. Secure audit logging with
tamper-resistant hardware. In D. Gritzalis, S. D. C. di Vimercati,
P. Samarati, and S. K. Katsikas, editors, 18th IFIP International
Information Security Conference (IFIPSEC), volume 250 of IFIP
Conference Proceedings, 2003, pages 73–84. Kluwer Academic
Publishers.
(http://www.ub.utwente.nl/webdocs/ctit/1/00000099.pdf)

7 C. N. Chong, R. van Buuren, P. H. Hartel, and G. Kleinhuis. Security at-
tribute based digital rights management (SABDRM). In F. Boavida,
E. Monteiro, and J. Orvalho, editors, Joint Int. Workshop on In-
teractive Distributed Multimedia Systems/Protocols for Multimedia
Systems (IDMS/PROMS), volume 2515 of Lecture Notes in Com-
puter Science, 2002, pages 339–352. Springer-Verlag.
(http://www.ub.utwente.nl/webdocs/ctit/1/00000079.pdf)

8 Y. W. Law, C. N. Chong, S. Etalle, P. H. Hartel and R. Corin. Licensing
Structured Data with Ease. In Int. Workshop for Technology, Econ-
omy, Social and Legal Aspects of Virtual Goods, 2003, page paper
11.
(http://www.ub.utwente.nl/webdocs/ctit/1/000000d0.pdf)

9 C. N. Chong, R. Corin, S. Etalle, P. H. Hartel, and Y. W. Law. Licens-
eScript: A Novel Digital Rights Language. In Int. Workshop for
Technology, Economy, Social and Legal Aspects of Virtual Goods,

8 EXPERIMENTS IN RIGHTS CONTROL

2004, page paper 11.
(http://www.ub.utwente.nl/webdocs/ctit/1/000000ba.pdf)

CTIT Technical Reports
10 J. Cheng, C. N. Chong, J. Doumen, S. Etalle, P. H. Hartel, and S. Niko-

laus. StreamTo: Streaming Content using Tamper-Resistant To-
kens. Technical report TR-CTIT-04-47, 18 pages, Nov. 2004, Cen-
tre for Telematics and Information Technology, Univ. of Twente,
The Netherlands, 2004.

11 C. N. Chong, S. Etalle, P. H. Hartel, R. Joosten, and G. Kleinhuis.
Inter-library Service Brokerage in LicenseScript. Technical report
TR-CTIT-04-33, 10 pages, Jul. 2004, Centre for Telematics and
Information Technology, Univ. of Twente, The Netherlands, 2004.
(http://www.ub.utwente.nl/webdocs/ctit/1/00000104.pdf)

12 R. Corin, C. N. Chong, S. Etalle, and P. H. Hartel. How to pay in
LicenseScript. Technical Report TR-CTIT-03-31, 5 pages, Centre
for Telematics and Information Technology, Univ. of Twente, The
Netherlands, 2003.
(http://www.ub.utwente.nl/webdocs/ctit/1/000000ce.pdf)

EXPERIMENTS IN RIGHTS CONTROL 9

CHAPTER 1

INTRODUCTION

The Internet has revolutionized our daily life. It has transformed the way
we communicate (e.g. chat, weblog, email, and messenger), live (e.g. on-
line shopping, Internet banking), work (e.g. small office home office, e-
commerce, e-business), and play (e.g. massive multiplayer role playing
games, world wide web). More advanced networking protocols, more
power-efficient and lighter hardware with bigger memory and faster pro-
cessors are developed everyday to meet increasing demands from just un-
der a billion users for digital content.

Digital content is anything that can be created, stored, processed, man-
aged and distributed by using the digital technology. Digital content can
be categorized into fancy media (games, film, video or music) and textual
media (ebook, document, data, etc). Digital content can be rendered in
high quality, is compact in size. Digital volatile disc (DVD), compact disc
(CD) and MPEG-1 audio layer 3 (MP3) have almost entirely replaced our
traditional video and audio tapes/records.

The Internet and digital content have a profound impact the way busi-
ness is done. For instance, by using Windows Media Player 9, we can
convert the music tracks from a CD to MP3, with only a couple of clicks.
Then, with the help of a peer to peer (P2P) file sharing mechanism [Kalker
et al., 2004] (Napster and Kazza) or BitTorrent [Cohen, 2003], count-
less copies of these MP3’s can be distributed worldwide almost instantly.

11

1.1. ACCESS CONTROL Introduction

Therefore, the intellectual property rights of the content are constantly be-
ing threatened by illegal copying and distribution of the content [Hartung
and Ramme, 2000].

Digital content also needs to be protected from being misused. For ex-
ample, hospitals need to protect specific parts of a patient’s medical record
from the insurance company but share these parts with other hospitals;
parents want to protect their underage children from unsuitable content
but they want to encourage them to watch educational content.

To solve these problems, we need to control the usage rights on the
content. A usage right (digital right or simply right) is a permission
granted by a content provider to a user to perform a particular operation on
a content. Rights include rights for direct use of objects (such as read), del-
egation of rights (such as permission to trade), and rights for administering
access (such as modify subject and object attributes that in turn determine
rights). Rights can be divided into many functional categories [Rosenblatt
et al., 2002], such as render rights (e.g. read), transport rights (e.g. move),
etc.

The development of rights control is still in its adolescence. Therefore,
the thesis presents an experimental approach focusing on the language
aspect of rights control.

In this section, we present a taxonomy showing that rights control is
related to the classical subject of access control. Section 1.1 explains ac-
cess control. Section 1.2 dwells on usage control, which Sandhu and Park
describe as the next vision of access control [Sandhu and Park, 2003]. Sec-
tion 1.3 provides a brief overview of rights control, which represents the
main contribution of the thesis. Section 1.5 summarizes the introduction.

1.1 Access Control

To log in to a computer system a valid username and password are needed.
We authenticate ourselves to protect our files from others. Similarly, we
need to present our bank card and enter a valid PIN number to withdraw
money from ATM machines to protect our money.

Those are just some examples of authentication, which is a necessary
prerequisite to access control. The purpose of authentication is to ensure

12 EXPERIMENTS IN RIGHTS CONTROL

Introduction 1.1. ACCESS CONTROL

that only legitimate users enter a system. Once the user is authenticated,
the system allows the user to perform certain operations on the system
resources corresponding to their authorizations. Following the examples
given above, with the valid username and password, the user can use the
computer to perform her daily tasks; with the valid bank card and PIN
number, the user can withdraw a certain amount of cash from the machine.

Authorization
Rule

Attributes

Subject

Attributes

ObjectReference
Monitor

Right

Figure 1.1: The fundamental model of access control, showing that the reference
monitor decides the rights on the object for the subject. The decision depends on
the attributes of the subjects and objects, and authorization rules.

The purpose of access control is to restrict the operations that a legit-
imate user can perform on the system resources [Sandhu and Samarati,
1994]. Access control normally involves two entities, namely a subject
and an object, each of which are further characterized by attributes. The
fundamental model of access control of Lampson [1974], is shown in Fig-
ure 1.1:

• The reference monitor decides and enforces the rights the subjects
possess on the objects. The usage decision is made corresponding
to the authorization rules and the attributes of the subject and object.

• A subject is normally an active entity, which initiates a request to
perform an operation on an object. For example, user.

• An object is normally a passive entity, which is used and asked (to
be used) by the subject. For example, file.

EXPERIMENTS IN RIGHTS CONTROL 13

1.2. USAGE CONTROL Introduction

• A right is a permission for the subject to perform a specific operation
on the object. For example, read.

• An attribute is a property of a subject and an object, which is used
to decide if the access request can be granted. For example, the
certificate identity of the subject.

• An authorization rule is a requirement that must be satisfied to allow
the subject to perform an operation on the object. For example, the
subject’s identity must be on the system database.

1.1.1 Mechanisms
Having introduced the main concepts involved in access control, we will
now consider the three main implementation mechanisms:

• Mandatory Access Control (MAC) defines a security level for the
objects in the system. To access these objects, the user must possess
the corresponding security level. This stems for the military domain.

• Discretionary Access Control (DAC) restricts access to objects based
on the user’s identity and/or groups to which the object belongs.
This access control is discretionary in the sense that a subject with
a certain access permission is capable of passing that permission
(direct or indirect) to another subject.

• Role-based Access Control (RBAC) associates the access permis-
sions to roles, which are associated with the users administratively.
RBAC is proposed to overcome the inflexibility of MAC and DAC
[Sandhu and Samarati, 1994]. The main difference is that RBAC
uses roles rather than identities.

1.2 Usage Control
Access control is not sufficiently powerful to support rights control on
digital content because it only deals with the authorization request and
decision once, i.e., at the time the request is made. It does not support

14 EXPERIMENTS IN RIGHTS CONTROL

Introduction 1.2. USAGE CONTROL

continuous controls for long-lived access, which is one of the features
required by the usage control on digital content. For example,

Example 1. A rented video can only be viewed for the next 3 hours.

Additionally, access control does not take into consideration the change
of state of the subject and object before and after of the access, i.e., muta-
bility of the subject and object attributes. For example,

Example 2. After rented a video, the credit of the subject is deducted with
the value of the video rental.

Authorization
Rule

Right

Attributes

Subject

Attributes

ObjectReference
Monitor

Obligation Condition

Figure 1.2: The usage control model components.

To control rights on digital content, two additional decision factors
(in addition to the authorization rules) are introduced [Sandhu and Park,
2003], as shown in Figure 1.2:

• An obligation is a requirement imposed on the subject (before or
after) using the object. An obligation is an operation that a subject
ought to perform. For instance,

Example 3. The user must pay before playing a music track.

• A condition is a constraint-based requirement that the subject and
object must meet before or after the usage rights are granted. For
example,

EXPERIMENTS IN RIGHTS CONTROL 15

1.2. USAGE CONTROL Introduction

Example 4. The user is only allowed to play the film within one
year after she purchases the film.

A condition is one of the decision factors that the system should
verify during the authorization process before granting the permis-
sion to the subject. This is distinct from the authorization rules in
the sense that the conditions can be dynamic, i.e., the states of the
permissions can be altered with time.

Description Application
preA Usage decision is performed

before the access and no at-
tributes are updated.

Traditional access control.

onA Usage request is always al-
lowed and checked repeatedly
for continuous access.

Restricted number of times to
access a content.

preB Obligations have to be ful-
filled before the access is per-
mitted.

Register before obtaining con-
tent.

onB Obligations need to be ful-
filled continuously before the
access is granted.

Must click on the advertise-
ment for 10 times before en-
tering the Web site.

preC Environmental or time-based
restrictions must be met be-
fore accessing.

Check the validity of the rights
before using the content.

onC Conditions are checked con-
tinuously while the rights are
being exercised.

System status changes sud-
denly and may have to termi-
nate the usage of content.

Table 1.1: The descriptions and applications of the basic UCON models, cor-
responding to the decision factors (Authorizations, oBligations, and Conditions)
and continuity of usage control (pre and ongoing).

Sandhu and Park [2003] propose a family of usage control models (the
UCON family). Table 1.1 briefly describes these models (the column De-
scription) and provides an example of application of the corresponding

16 EXPERIMENTS IN RIGHTS CONTROL

Introduction 1.2. USAGE CONTROL

model (the column Application). These models cover the areas of tra-
ditional access control, trust management and digital rights management
(DRM) (which we will discuss later chapter 5).

Example 1 and Example 4 are examples of the preC model; Exam-
ple 3 is an example of the preB model. Example 2 is explained further in
section 1.2.1.

1.2.1 UCONABC

Park and Sandhu [2004] have further classified the usage control models
presented in Table 1.1 into 16 models based on an additional criteria: mu-
tability, which allows updates on subject or object attributes at different
times. If all attributes are immutable, this implies that no updates are pos-
sible. With mutable attributes, updates are plausible before (pre), during
(ongoing) or after (post) the right is exercised.

These 16 models are called the UCONABC models. They are indicated
by the ‘3’ (checked entries) in Table 1.2. The unchecked entries indicate
the cases where updates are not likely to be useful in practice. Example 2
is an example of “preA post-update” model. The reader may refer to Park
and Sandhu’s article for more details [Park and Sandhu, 2004].

immutable pre-update ongoing-update post-update
preA 3 3 3

onA 3 3 3 3

preB 3 3 3

onB 3 3 3 3

preC 3

onC 3

Table 1.2: The 16 basic UCONABC models.

To illustrate the implementation of the UCONABC models later, we
reproduce here a summary of the formalization of UCONABC:

• S and O represents the subject and object, respectively.

• ATT (S) and ATT (O) represent the set of attributes of the subject
and object, respectively.

EXPERIMENTS IN RIGHTS CONTROL 17

1.2. USAGE CONTROL Introduction

• Two basic predicates are defined for making the usage decisions:

allowed(s, o, r) =⇒ conditions

stopped(s, o, r) ⇐= conditions

These predicates indicate that the subject s is allowed respectively
that any previous allowance has been stopped to exercise right r on
the object o, depending on whether the conditions are satisfied.

To complete the discussion of the UCONABC model, we show an
example here, taken from Sandhu and Park’s article [Park and Sandhu,
2004]:

Example 5. DRM pay-per-use with a prepaid credit.

M is a set of monetary amounts
credit : S → M
value : O × R → M

ATT (s) : {credit}
ATT (o, r) : {value}

allowed(s, o, r) ⇒ credit(s) ≥ value(o, r)
preUpdate(credit(s)) : credit(s) = credit(s) − value(o, r)

Here credit is a function that returns the amount of money that the subject
(s) has; value is a function that returns the monetary value of the rights (r)
to be exercised on the object (o); and preUpdate is a procedure to perform
update operations on the attributes.

The interpretation of the Example 5 is as follows: if the credit of a
subject is not less than the value of the requested usage, the request is
allowed. Once the request is allowed, the subject’s credit is deducted by
the value of the usage.

The UCONABC models do not show any enforcement mechanisms,
or how the updates on the mutable attributes have to be performed. The
models also do not include implementation details. Our work does provide
these details.

As shown by Sandhu and Park, the UCONABC model is a compre-
hensive and conceptual framework that is able to model traditional access
control as well as more modern and sophisticated usage control on the
content.

18 EXPERIMENTS IN RIGHTS CONTROL

Introduction 1.3. RIGHTS CONTROL

1.3 Rights Control
The rights in the usage control models discussed above do not have at-
tributes, which means that rights are immutable. Therefore, it is not pos-
sible to implement some useful usage scenarios. For example,

Example 6. Alice obtains an educational video from her teacher, who
allows her to watch it and then to give the video to Bob so that he can
watch it also.

UCONABC cannot express such usage scenario because UCONABC

cannot express a right that Alice can exercise, and which allows her to
update right attributes. It will in turn allow Bob to watch the video. There-
fore, we propose rights control as a further extension of usage control. In
this section, we explain the features of rights control, and then provide a
glimpse of LicenseScript, which is able to model rights control.

Authorization
Rule

Attributes

Subject

Attributes

ObjectReference
Monitor

Obligation Condition

Attributes

Right

Figure 1.3: The rights control model.

In rights control, rights, similar to subjects and objects, have mutable
attributes. Rights can also be updated, just like the subjects and objects.
The rights control model, as shown in Figure 1.3, extends the usage control
model of Figure 1.2 by associating attributes to the right.

This allows us to model: (1) derivative rights (Rosenblatt et al. [2002]
propose four other types of digital rights, namely render rights, transport
rights,and utility rights, which can be captured by the rights control model,

EXPERIMENTS IN RIGHTS CONTROL 19

1.3. RIGHTS CONTROL Introduction

as will be discussed later in the thesis), (2) administrative rights, (3) dele-
gation rights, and (4) reverse rights [Park and Sandhu, 2004]. These rights
are related to each other. Example 6 is an example of administrative right
and delegation right because Alice can modify the attributes to allow Bob
to watch the video.

A derivative right comes in two flavours: (1) a right to reuse or re-
produce an object that may produce another object, e.g. clip a music to
produce another music, and (2) a right that after being exercised on an
object will create a secondary object, e.g. play a music that creates a log.
In first case, the secondary object may inherit some attributes of the rights
of the original object (depending on the business model or provider’s con-
trol). The second case is closely related to the reverse right, in the sense
that a secondary object, which is controlled by the reverse right, is created
by exercising the derivative right.

An administrative right is a right that can (1) manipulate another right,
e.g. to create a new right in addition to the existing rights, or (2) admin-
ister another right, e.g. to modify object and subject attributes that in turn
determine the right. In first case, attributes of the rights are modified.

A delegation right transfers a right to another entity, e.g. to sell the
right to play a music.

A reverse right allows a beneficiary (e.g. end-user) to initiate rights
control on the secondary object created after exercising a derivative right,
e.g. to control the access of the content provider on the user’s payment
information after playing a film. The beneficiary should be able to manip-
ulate attributes of the rights of the secondary object.

Rights control supports complex scenarios. Unfortunately, this makes
rights control itself also less than simple. To explore the consequences of
the additional complexity, we had to experiment with (1) scenarios, (2)
expressiveness of the language used to describe rights control, and (3) the
implementation of rights enforcement.

1.3.1 LicenseScript

LicenseScript [Chong et al., 2003a] is the embodiment of rights control.
In this section, we will provide a glimpse of LicenseScript but defer the
complete description to part II (chapter 2 pp. 35).

20 EXPERIMENTS IN RIGHTS CONTROL

Introduction 1.3. RIGHTS CONTROL

LicenseScript is based on logic programming and multiset rewriting.
The basic construct is the license, which has the following form:

object name(Content, Clauses, Bindings)

Here object name is the name of the LicenseScript object; Content is
the unique identifier of the associated content; Clauses is a list of Prolog
clauses that decide if the operations requested are allowed or forbidden;
and Bindings is a list of attributes that carry the status of the Licens-
eScript object.

A clause has the following form:

head :- atom_1,atom_2,...,atom_n.

Here head is the head of the clause (i.e., the name and parameters of
the clause), and the conjunction of atom 1,...,atom n is the body of
the clause. Authorization rules, obligations, conditions and mutability are
captured by the clauses.

LicenseScript licenses are notionally gathered in a multiset on which
multiset rewrite rules operate. These capture aspects of communication
and updates. The rewrite rules take the following form:

rule name(arguments) : multiset1 −→ multiset2

⇐= conditions

Here rule name is the name for the rule; arguments are the arguments
for this rule; multiset1 and multiset2 refer to the multiset of before and
after the execution of the rule, respectively; and conditions must be satis-
fied for the rule to apply. The conditions invoke queries over the clauses.

To illustrate that LicenseScript can model rights control, we use Exam-
ple 6 (More examples will be shown in part II). We define a LicenseScript
license for the educational video:

license(video, Clauses, Bindings)

The list Clauses contains some clauses that allow Alice to watch the
video and allow others (e.g. Bob) to watch it with permission of Alice:

EXPERIMENTS IN RIGHTS CONTROL 21

1.3. RIGHTS CONTROL Introduction

canwatch(Sub,B1,B2) :-
get_value(B1,watch_rights_holders,S),
is_member(Sub,S).

candelegate(Sub1,Sub2,B1,B2) :-
get_value(B1,watch_rights_holders,S),
is_member(Sub1,S),
add_member(Sub2,S,S2),
set_value(B1,watch_rigths_holders,S2,B2).

Here, get value(X,Y,Z) retrieves the value of binding X from list Y
and stores the value to variable Z; and set value(W,X,Y,Z) sets the
value of binding X from list W to value Y and stores it to list Z; is member
(X,Y) checks if X belongs to list Y; and add member(X,Y,Y2) adds
X to list Y, returning list Y2.

The list Bindings contains the following bindings:

watch_rights_holders=[alice]

Here, rights holders contains a list of authorized subjects, in this
case alice.

With this license, Alice can exercise the delegation right by executing
the multiset rewrite rule delegate(alice, bob, video):

delegate(S1, S2, O) : license(O, Cs, Bs1) → license(O, Cs, Bs2)

⇐ Cs ` candelegate(S1, S2, Bs1, Bs2)

Here, Cs ` candelegate(S1, S2, Bs1, Bs2) is a condition of the rule
delegate(·), which basically means that execution of the query candelegate
(S1, S2, Bs1, Bs2) in the clauses Cs yields success.

After Alice has executed delegate(·), the binding rights holders
has been updated by adding Bob’s identity bob:

watch_rights_holders=[alice,bob]

This indicates that with the updated license, Bob can execute the multiset
rewrite rule watch(bob, video):

watch(S, O) : license(O, Cs, Bs1) → license(O, Cs, Bs2)

⇐ Cs ` canwatch(S, Bs1, Bs2)

22 EXPERIMENTS IN RIGHTS CONTROL

Introduction 1.3. RIGHTS CONTROL

1.3.2 Implementing UCONABC in LicenseScript
In this section, we implement Example 5 of UCONABC in LicenseScript
to illustrate the difference between UCONABC and LicenseScript:

license(object, Clauses, Bindings)

Here, object is the representation of the object. From Example 5, the
pre-authorization of using the object is that the subject must have enough
credit for paying the value of performing the right; and the post-update is
that the subject’s credit is deducted by the value of performing the right.

We use clause canallow to capture the pre-authorization and post-
update:

canallow(Subject,Right,B1,B2) :-
get_value(B1,subject,S),
Subject==S, %authentication
get_value(B1,credit,M),
get_value(B1,Right,V),
M >= V, %pre-Authorization
NewM = M - V, %post-Update
set_value(B1,credit,NewM,B2).

We use several bindings to capture the necessary attributes of the sub-
ject and object:

[subject=s, credit=c,
[right1=value1,right2=value2,...]]

Here, the binding credit corresponds to ATT (s); s is the identity of the
subject; c is a constant indicating the credit of the subject; and [right1=
value1, ...] corresponds to ATT (o, r) and represents the list of al-
lowable rights on the object and the corresponding value.

Finally we use the rewrite rule allowed(·) to express the UCONABC

predicate allowed(·) as follows:

allowed(S, O, R) : license(O, Cs, Bs1) → license(O, Cs, Bs2)

⇐ Cs ` canallow(S, R, Bs1, Bs2)

EXPERIMENTS IN RIGHTS CONTROL 23

1.4. COMPLEXITY Introduction

Here, S, O, and R refer to subject, object and right, respectively; Cs is
the list of clauses; Bs1 and Bs2 are the bindings, before and after the rule
is applied.

We use LicenseScript to express explicitly the details of implementa-
tion of the UCONABC models, i.e., the authentication (Subject==S),
condition (M >= V), and update (NewM = M - V). The explicitness
gives us an advantage when implementing the model in a real system.
In short, LicenseScript can bridge the gap between an abstract design and
an implementation of UCONABC.

We will show how we use LicenseScript to model rights control in
more detail in part II (pp.29).

1.4 Complexity

In this section, we analyze the complexity of LicenseScript correspond-
ing to state-of-the-art security models. To analyze the complexity of ac-
cess control system, security models are used to aid in formulating the
rules, which specify under which conditions, what operation is allowed;
and explaining how the system performs authorization decisions [McLean,
1994].

Harrison et al. [1974] formalize a simple safety analysis, i.e., deter-
mine whether an access control system can reach a state in which an un-
safe access is allowed. A subject should be able to tell whether what she
is about to do, e.g. give away a right can lead to the further leakage of
that right to some unauthorized subjects. They show that any Turing ma-
chine can be simulated by an access control system. Harrison et al. [1974]
define six primitive operations, such as “enter a right in a cell of an ac-
cess control matrix”. They also define a command to encapsulate a list of
conditions, in which a sequence of primitive operations can be executed.
Harrison et al. [1974] prove three complexity results of the safety problem
for the HRU model:

1. Safety is undecidable in general.

2. Safety is decidable for a mono-operational system (NP-complete).

24 EXPERIMENTS IN RIGHTS CONTROL

Introduction 1.4. COMPLEXITY

3. Safety is decidable within the PSPACE-complete complexity class
with the restriction that no subjects or objects are allowed to be cre-
ated [Li and Tripunitara, 2004].

As stated in 1, in general safety in the HRU model is undecidable.
However, as stated in 2, HRU does have decidable safety property for the
mono-operational case, where each command only allows a single primi-
tive operation.

It is difficult to encode the LicenseScript model into the HRU model
and to use the existing results for several reasons: (1) The request deci-
sion, which is based on the attributes of the subject, object and right in
LicenseScript would not be mono-conditional in the resulting HRU com-
mand [Sandhu, 1992]; (2) The alteration on the attributes, e.g. to create
a new subject for delegation, is unlikely to be mono-operational in HRU
command [Li and Tripunitara, 2004].

Therefore, safety analysis is more complex in LicenseScript than in
HRU. It is clear that the safety problem (i.e., deciding whether – given a
multiset and a set of rules – it will eventually be possible to fire a given
rule with given arguments) is undecidable. In fact, it is not even possible to
restrict the system to one in which the safety problem is decidable without
losing one of the essential features of LicenseScript: that one should be
able to acquire new licenses. In fact, acquiring new licenses usually allows
for firing new rules.

While safety is in general undecidable, it is useful to see if it is possible
to isolate situations in which this is not the case. Here we want to point
out that there exist at least two techniques that can be used to prove the
safety of a given configuration. The first is by using invariants, the second
is by showing that the system is terminating and finitely branching. In this
second case, it is possible to carry out a full search of the multisets space
generated by the (repeated) application of the rules and thus to establish
whether a given unsafe configuration is reachable or not. We now want
to spend a couple of words showing how this can be done in practice,
by borrowing some techniques from the study on the termination of logic
programs (i.e., the foundation of LP). In the light of what we said in the
previous paragraph, we have to require a number of restrictions:

1. Rules have ground (variable-free) heads. If this condition is not sat-

EXPERIMENTS IN RIGHTS CONTROL 25

1.4. COMPLEXITY Introduction

isfied we immediately obtain a system that is not finitely branching.
In some cases (i.e., if rules are called with arguments taken from a
finite set) this condition can be met by instantiating the rules’ ar-
guments in all possible ways. Another way of avoiding this restric-
tion is by applying abstract interpretation to the head’s positions that
might take an infinite number of arguments.

2. The starting mustiset configuration consists of atoms of the form
i(o, c, b), where o is ground, c is a set of clauses, and b is a set
of bindings whose right-hand side consists of ground terms. This
condition is always met in practice.

3. Rules have the form:

r : a1(o1, c1, b1), . . . , am(om, cm, bm) →

i′1(o
′

1, c
′

1, b
′

1), . . . , i
′

n(o′n, c′n, b′n) →

⇐ c1 ` pr(b1, . . . , bm, b′1, . . . , b
′

n)

Where (1) for each i, oi and o′i are ground, while ci, c
′

i, bi and b′i are
variables. In addition, (2) each c′i is equal to some cj .

The condition (1) is always met in practical deployments of the sys-
tem and simplifies the discussion, while (2) is needed to make sure
that the programs carried by the licenses are not modified at run-
time.

4. Given: any rule r (notation as in point 3.), any atom a(o, c, b) in the
initial multiset, any set of ground terms t1, . . . , tm, and distinct vari-
ables x1, . . . , xn, we require that the query pr(t1, . . . , tm, x1, . . . , xn)
is terminating and finitely branching in c.

This is needed to ensure that the decision process terminates and
that the whole system remains finitely branching. Notice that in pure
logic programming a terminating system is always finitely branch-
ing (in which case one can use standard LP techniques [Apt and
Pedreschi, 1993; Bossi et al., 1991; De Schreye and Decorte, 1994;
Etalle and Gabbrieli, 1999]) but that this is not necessarily the case
if the program can interact with the outside world.

26 EXPERIMENTS IN RIGHTS CONTROL

Introduction 1.4. COMPLEXITY

5. There exists a level mapping | | : B → W , where B is the set of all
possible binding sets, and W is a set with a well-founded ordering
<, such that given any rule r (notation as in point 3.), any atom
a(o, c, b) in the initial multiset, and b1, . . . , bm, b′1, . . . , b

′

n ∈ B, if
pr(b1, . . . , bm, b′1, . . . , b

′

n) succeeds in c then

|b1|, . . . , |bm| �m |b′1|, . . . , |b
′

n|

Where �m is the (well-founded) multiset ordering induced by the
ordering > on W1

We can finally state the result we are aiming at.

Proposition 7. If the initial multiset and the set of rules satisfy the above
conditions 1, . . . , 5, then the system is terminating and finitely branching,
and therefore safety is decidable.

Proof (sketch). Each action of the system requires (a) selecting a rule,
(b) selecting a multiset m1 (the lhs of the rule), (c) firing a condition in
a program c (contained in an atom of m1), (d) rewriting m1 with m2.
Action (a) is terminating and finitely branching thanks to the fact that by
condition 1 rules have no nonground arguments. Action (b) is clearly
terminating (the multiset is finite). Notice that condition 3 guarantees that,
no matter how the multiset is being rewritten, the set of programs (set of
clauses in the licenses) we have to deal with does not change; therefore, (c)
terminates because of condition 4. Finally, condition 5 guarantees that the
new multiset is smaller than the original one according to a well-founded
ordering. This implies that it is not possible to have an infinite chain of
actions. QED.

1Quoting from [Apt, 1997]: The multiset ordering is an ordering on finite multisets
of natural numbers. It is defined as the transitive closure of the relation in which X is
smaller than Y if X can be obtained from Y by replacing an element a of Y by a finite
(possibly empty) multiset of natural numbers each of which is smaller than a. In symbols,
first we define the relation ≺ by: X ≺ Y iff X = Y − {a} ∪ Z for some a ∈ Y and Z

such that b < a for b ∈ Z, where X , Y and Z are finite multisets of natural numbers and
then define the multiset ordering ≺m as the transitive closure of the relation ≺.

EXPERIMENTS IN RIGHTS CONTROL 27

1.5. SUMMARY Introduction

1.5 Summary
Digital content has become extremely common due to the rapid develop-
ment of the Internet and digital technologies. Illegal use of digital con-
tent has caused huge loss to the content industry. Furthermore, many ex-
perimental, novel, and complex usage scenarios of digital content have
emerged. Therefore, rights control over digital content is mandatory.

Access control is limited in its ability to control rights on digital con-
tent. To overcome some of the limitations, usage control is proposed by
Sandhu and Park. However, usage control does not consider the muta-
bility of rights. This is useful to model administrative rights, delegation
rights and reverse rights. Therefore, we propose rights control as a further
extension of usage control.

We will provide additional background on two main aspects of rights
control, namely rights expression languages and rights enforcement mech-
anisms later in part II (pp.29) and part III (pp.95), respectively.

28 EXPERIMENTS IN RIGHTS CONTROL

Part II
RIGHTS EXPRESSION LANGUAGES

A rights expression language (REL) is a domain specific language de-
signed to enable efficient processing by machines of rights on digital con-
tent. RELs for instance, can be used to describe an agreement between a
content provider and a music distributor, or to express the copyright asso-
ciated with a given piece of music, or by specifying under which condition
the user is allowed to play, broadcast or copy the music.

In chapter 1, we have briefly explained the models of access control,
usage control and rights control. Here, we describe some languages that
are in use to specify access control, usage control and rights control.

Access Control Matrix
An access control matrix (ACM) [Gollmann, 1999] states the rights of
each subject on each object in a form of table. Table 1.3 shows an example
of an ACM, which for instance, states that Alice and Charles possess the
right to read (r) and write (w) File X, whereas Bob is only allowed to read
File X.

User File X File Y File Z
Alice r,w r r
Bob r r,w -
Charles r,w - -

Table 1.3: An example of an access control matrix.

We can implement an access control matrix in two manners: rights can
be kept with the subjects or with the objects.

In the first case, a subject is given a capability, which is this subject’s
access right. This capability corresponds to the subject’s row in the ac-
cess control matrix. For example, the access rights of Table 1.3 given as
capabilities are shown in Table 1.4.

29

Alice’s capabilities – File X: r,w; File Y: r; File Z: r
Bob’s capabilities – File X: r; File Y: r,w
Charles’s capabilities – File X: r,w

Table 1.4: Capabilities of subjects.

Typically, capabilities are associated with discretionary access con-
trol (as discussed in chapter 1). With capabilities it is difficult to get an
overview of who has permission to access a given object. In addition, it
is difficult to revoke a capability when there is a huge population of sub-
jects. However, capability-based access control can be used in distributed
systems where the access control has to deal with users roaming within a
computer network.

An access control list (ACL) stores the access rights to an object with
the object itself. An ACL therefore corresponds to a column of the access
control matrix and states who may access a given object. The access rights
of Table 1.3 given in the form of ACLs are shown in Table 1.5.

ACL for File X – Alice: r,w; Bob: r; Charles: r,w
ACL for File Y – Alice: r; Bob: r,w; Charles: r
ACL for File Z – Alice: r

Table 1.5: ACLs of object.

ACLs are simple to implement in relatively small systems with a rel-
atively constant user population, but ACLs are inefficient for large-scale
systems, e.g. a corporate system. It is time-consuming to check a large
ACL to decide the rights of the subject, or to remove a subject from all(!)
ACLs.

We can encode an access control matrix by using a first-order logic [see
Abadi, 2003]. For instance, we can encode Alice’s capabilities shown in
Table 1.4, as shown in Figure 1.4.

In Figure 1.4, we use predicate alice(X,Y) to indicate that alice
has access right Y on content X. We can also use predicate bob(X,Y)
to express Bob’s capabilities. Similarly, we can use first-order logic to
encode the access control list of File X (Table 1.5) in Figure 1.5. The
predicate fileX(X,Y) denotes that the subject X has access right Y on

30 EXPERIMENTS IN RIGHTS CONTROL

fileX.

alice(fileX,r)
alice(fileX,w)
alice(fileY,r)
alice(fileZ,r)

Figure 1.4: Logic representation of
Alice’s capabilities shown in Ta-
ble 1.4.

filex(alice,r)
filex(alice,w)
filex(bob,r)
filex(charles,r)
filex(charles,w)

Figure 1.5: Logic representation of
access control list of File X shown
in Table 1.5.

An access control matrix is only capable of specifying access control.
It is limited in its capability to express obligation and condition. There-
fore, it cannot satisfy requirements of modern applications.

Several more advanced languages based on first-order logic have been
proposed to meet different requirements of various application domains
shown in Figure 1.6. We explore these languages in the following sections.

Traditional
Access Control

Copyrights
Laws

Digital Rights
Management

Trust
Management

LicenseScript

DR Binder

Privacy
Protection

Figure 1.6: Application domain covered by access control language (light gray
box), usage control language (dark gray box) and rights control language (dark
box).

Access Control Language

DeTreville’s Binder [DeTreville, 2002] is a logic-based access control lan-
guage. Binder is based on Datalog, which is a subset of the well-known
Prolog logic-programming language [Lloyd, 1987].

EXPERIMENTS IN RIGHTS CONTROL 31

can(alice,r,fileX).
can(alice,w,fileX).
can(bob,r,fileX).
can(charles,r,fileX).
can(charles,w,fileX).
can(alice,r,fileY).
can(bob,r,fileY).
can(bob,w,fileY).
can(alice,r,fileZ).

Figure 1.7: The Binder encoding of the access control matrix Table 1.3.

We can encode the access control matrix of Table 1.3 by using Binder
as shown in Figure 1.7. The Binder predicate can(X,Y,Z) denotes that
subject X has an access right Y on content Z.

Binder can express more advanced access control mechanisms. For
instance, Binder can express mandatory access control and role-based ac-
cess control (as discussed in chapter 1) by extending the predicate can as
shown in Example 8.

Example 8. Employee of BigCo can read File X.

can(X, r, fileX) :-
employee(X, bigco).

In Example 8, predicate employee(X, bigco) indicates if sub-
ject X is an employee, i.e., role, of the company bigco. Example 8 is a
Binder program specifying that X must be an employee of bigco so that
she can read (r) fileX.

Binder can encode more than an access control matrix, e.g. delega-
tion and trust, by using application-specific predicates [DeTreville, 2002].
Therefore, as shown in Figure 1.6, Binder can also express trust manage-
ment in addition to traditional access control.

Usage Control Language
Binder uses attributes of a subject and an object to decide if an access right
can be granted. For instance, in Example 8, employee is an attribute

32 EXPERIMENTS IN RIGHTS CONTROL

(role) of a subject.
Usage control, as discussed in chapter 1, introduces two additional

decision factors in deciding a right on an object to a subject, namely obli-
gation and condition. An example of a language that offers these features
is Gunter et al. [2001] logic-based language “Digital Rights” (DR). To
illustrate their language, we use Example 9.

Example 9. The content can be rendered every time after the subject pays.

license(t0, x, p, w, d) =

{t0 : pay[x], t1 : render[w, d] | t0 < t1 < t0 + p}

As shown in Example 9, two types of actions are defined in DR,
namely render[w, d] and pay[x]. Action render[w, d] represents ren-
dering of content w by device d; and action pay[x] represents making a
payment of amount x.

An action (a) is always paired with a time t, i.e., t : a, which indicates
that at time t an action a is performed. Therefore, the license of Example 9
denotes that an amount of money x must be paid at time t0 so that the
content w can be rendered by device d for a period of time p.

The action pay[x] represents an obligation; t represents a time-based
condition; and d (in action render[w, d]) is a location/system-based con-
dition. In short, their logic is able to express some obligations and condi-
tions.

DR is a high-level abstract language. It abstracts usage actions into
two genres, i.e., render and pay. It is not able to distinguish different
types of actions. Therefore, it is not able to encode access rights stated in
an access control matrix of Table 1.3 explicitly.

In addition, DR is too abstract to model more complex usage scenar-
ios, for example DR cannot model a scenario where a user is required to
register as a member before renting a video.

Rights Control Language
As discussed in chapter 1, the rights control model associates mutable
attributes with a right. This allows us to model more sophisticated rights,
e.g. derivative right, administrative right, and delegation right.

EXPERIMENTS IN RIGHTS CONTROL 33

We have briefly introduced LicenseScript [Chong et al., 2003a] in
chapter 1. In this part of the thesis, we introduce the design rationale
of LicenseScript in chapter 2.

Chapter 3 explains LicenseScript further by using a number of usage
scenarios, which cover a wide variety of application domains, as shown
in Figure 1.6. We also compare prominent XML-based rights expression
languages, i.e., XrML and ODRL, with LicenseScript. Chapter 4 explores
another application domain of LicenseScript: to model a difficult aspect
of copyright law, i.e., Fair Use.

34 EXPERIMENTS IN RIGHTS CONTROL

CHAPTER 2

LICENSESCRIPT

LicenseScript: A Novel Digital Rights Language
and its Semantics1

Cheun Ngen Chong, Ricardo Corin, Sandro Etalle, Pieter Hartel, Willem
Jonker, and Yee Wei Law

Abstract We propose LicenseScript as a new multiset rewriting/logic-
based language for expressing dynamic conditions of use of digital assets
such as music, video or private data. LicenseScript differs from other
rights expression languages in that it caters for the intentional but legal
manipulation of data. We believe this feature is the answer to providing
the flexibility needed to support emerging usage paradigms of digital data.
We provide the language with a simple semantics based on traces.

1This chapter has been published in 3rd International Conference on Web Delivering
of Music (WEDELMUSIC), 2003, pages 122–129, IEEE Computer Society Press.

35

2.1. INTRODUCTION LicenseScript

2.1 Introduction

Most information, such as books, music, video, personal data and sensor
readings (we generalize this information as data), is intended for a specific
use. This specific use should conform to particular terms and conditions,
which are often governed by licenses. To describe a license, a specific lan-
guage is needed. In fact, the last few years have witnessed a proliferation
of rights expression language (REL) (also known as digital rights lan-
guage (DRL)). These are usually based on XML, e.g. XrML [Guo, 2001]
(http://www.xrml.org) and ODRL [Iannella, 2001] (http://www.odrl.
net).

It is now widely acknowledged that the above-mentioned XML-based
RELs have some important shortcomings: (1) the syntax is complicated
and obscure when the conditions of use become complex, (2) these lan-
guages lack a formal semantics [Gunter et al., 2001; Pucella and Weiss-
man, 2002]; the meaning of licenses relies heavily on the human interpre-
tation, and (3) the language cannot express many useful copyright acts [Mul-
ligan and Burstein, 2002]. Gunter et al. [2001] overcome some of the
drawbacks by introducing an abstract model and language with a cor-
responding formal semantics. Pucella and Weissman [2002] follow up
Gunter et al’s effort with more rigor.

Licenses play an important role in the electronic distribution of mu-
sic. With the advent of the Internet, music labels are searching for ways
of distributing music over the Internet in a way that respects the rights of
the owners and the labels. At the same time, partly due to Napster, users
have become used to easy access to music on their devices. As a result,
Electronic Music Distribution (EMD) will only be successful if these sys-
tems provide flexible support for licensing of music and the user gains a
broad freedom in accessing the music, which in turn requires flexible and
easy to understand licenses will a well defined semantics. In an attempt
to cope with the requirement of seamless music access on users devices,
the notion of authorized domain [van den Heuvel et al., 2002] has been
developed (http://www.dvb.org).

An authorized domain can be seen as the collection of devices that be-
longs to a user or a household. The idea is that music is delivered to the
authorized domain, and that it can be accessed seamlessly on any device

36 EXPERIMENTS IN RIGHTS CONTROL

LicenseScript 2.2. LANGUAGE

in that domain. The music access is governed by licenses that are bound
to the domain, rather than to individual devices. In addition to licenses
that govern the access within the domain, there are licenses that govern
the exchange of music between domains. The latter guarantees that unau-
thorized music exchange can be prohibited. Regrettably, state-of-the-art
languages cannot cope with this scenario.

In this paper, we propose LicenseScript, a language that is able to ex-
press conditions of use of dynamic and evolving data in authorized do-
mains. LicenseScript is based on (1) multiset rewriting, which is able to
capture the dynamic evolution of licenses, (2) logic programming, which
captures the static terms and conditions on a license, and (3) a judicious
choice of the interfacing mechanism between the static and dynamic do-
mains. LicenseScript makes it possible to express a multitude of sophis-
ticated usage patterns precisely and clearly. The formal basis of Licens-
eScript (multiset rewriting and logic programming) provides for a concise
and explicit formal semantics.

We use Prolog program for the license clauses because of the double
declarative and procedural reading of Prolog. Thanks to its declarative
reading, Prolog is suitable for rendering licenses, which can easily be read
and understood by humans. In fact, Prolog is often used as a language to
describe policies and business rules. On the other hand, the procedural
reading of Prolog allows for an direct execution of the code.

The organization of the remainder of the paper is as follows: Sec-
tion 2.2 explains the LicenseScript language. Section 2.3 demonstrates
examples for Electronic Music Distribution. Section 2.4 gives some re-
lated work. Finally, Section 2.5 gives the conclusions.

2.2 Language

In this section we describe the LicenseScript language. We start by intro-
ducing some basic concepts that are needed in the sequel.

EXPERIMENTS IN RIGHTS CONTROL 37

2.2. LANGUAGE LicenseScript

2.2.1 Preliminaries

As mentioned earlier, LicenseScript is based on multiset rewriting. By
a multiset (also known as a bag) we mean a set with possibly repeated
elements; denoted with brackets. For example, [a, b, b, c] is a multiset.

In our approach, licenses are bound to terms that reside in multisets.
For the specification of these licenses, we use logic programming; the
reader is thus assumed to be familiar with the terminology and the basic
results of the semantics of logic programs [Lloyd, 1987]. We also use
Prolog notation: we use words that start with uppercase (X , Y , · · ·) to
denote variables, and lowercase (music piece, video track,expires, · · ·)
to denote constants. We work with queries, that is sequences of atoms.
Further, given a syntactic construct E (so for example, a term, an atom or
a set of equations) we denote by Var(E) the set of the variables appearing
in E. Given a substitution σ = {x1/t1, ..., xn/tn} we denote by Dom(σ)
the set of variables {x1, . . . , xn}. A substitution σ is called a matching
substitution of terms t and s if tσ = s, and Dom(σ) = Var(t). In that
case, we say that t matches s. If a term matches with another one, then it
follows that there exists a unique matching substitution.

We also borrow the concept of SLD-resolution [Lloyd, 1987] from
logic programming:

Definition 10. Given a program P , and a query (i.e., a conjunction of
atoms) Q, we write P `SLD Q (or simply P ` Q) when there is a success-
ful SLD-derivation for query Q in program P . A successful execution of
a query may result in a (computed answer) substitution. P ` Q basically
means that execution of the query Q in the program P yields success.

2.2.2 Licenses

A license defines the terms and conditions of use for music, videos etc.
Therefore, a license contains at least two relevant items of information:
(i) a reference to the data that is being licensed, and (ii) the conditions of
use on that data.

In our formalism, a license is represented by a term of the form lic(
content, ∆, B) (as can be seen in Figure 2.1) where:

38 EXPERIMENTS IN RIGHTS CONTROL

LicenseScript 2.2. LANGUAGE

Multiset

Rules

Content

Bindings

Old License

Clauses

Content

Bindings

New License

Clauses

Figure 2.1: The transformation of licenses with content and bindings in a multiset
caused by rules.

• content is a unique identifier representing the data the license refers
to.

• ∆ is a set of clauses, i.e., a Prolog program. This program defines
when certain operations (like play) are allowed.

• B is a set of bindings, i.e., a set containing elements of the form
name ≡ value. For instance {expires ≡ 10/10/2003} is a set of
bindings with just one element.

Bindings are needed to have a flexible way of storing modifiable data. A
license could be regarded as a database in which ∆ is the intensional part,
while B is the extensional part.

To interface licenses with the external world, we have to define an
interface, i.e., a set of reserved calls that form the “API” of the license.
The precise definition of this interface is beyond the scope of this paper.
For example, we use canplay(·) to indicate when a license allows a given
piece of music to be played: if the query canplay(B, B ′) succeeds in the
program ∆, this means that the license lic(a, ∆, B) allows the piece a to

EXPERIMENTS IN RIGHTS CONTROL 39

2.2. LANGUAGE LicenseScript

be played. Notice that we passed the set of bindings B as an argument to
the query.

Example 11.

1. The following license allows to play mus:

lic(mus, {canplay(X, X) : −true.}, {})

2. The license lic(mus, {}, {}) does not allow any operation on mus.

3. The license

lic(a, ∆, {expires ≡ 10/10/2003})

where ∆ is

{canplay(B, B) : −today(D),

get value(B, expires, Exp), Exp > D.}

allows to play a until the given expiration day.

today(D) and get value(B, n, V) are two primitives that work as fol-
lows: today(D) binds the variable D to the current system date, while
get value(B, n, V) reports in V the value of the name n according to
the set of bindings B. In the remainder, we gather all such primitives in a
special program that we call the domain, denoted D. Notice that there can
be many domains in which licenses reside, and probably a domain will
have different meanings for the primitives than another domain.

There are situations in which the “execution” of a license should be
followed by the creation of a new set of bindings for the next step in the
evolution of the license. Consider for instance a license that allows to play
a piece of music only a given number of times: every time a play action
is carried out, a counter should be incremented. This is done by means
of the primitive set value(OldB, name, value, NewB). This primitive
allows a name from a binding to be associated with a new value, which
we use to support the evolution of licences. Consider, for instance, the

40 EXPERIMENTS IN RIGHTS CONTROL

LicenseScript 2.2. LANGUAGE

following license: lic(a, ∆, {played times ≡ 3}), where ∆ consists of
the following clause:

canplay(B, B′) : −

get value(B, played times, R), R < 10,

set value(B, played times, R + 1, B ′).

Here, we first extract the value of variable played times into local
variable R. Then, if we have not exhausted the possible playing times
allowed by the license (in this case, 10), we proceed to increase the value
of played times from bindings B to R + 1, into new output bindings set
B′.

2.2.3 The Rules
Licenses typically reside inside a device. The modelling of communica-
tion between devices and the licenses is done by means of rewrite rules.
These rules can be thought as the firmware of the device; licenses may
come and go from a device, but the rules are fixed into the device (how-
ever, rules can be ‘updated’ once in a while). The syntax of rules we
adopt is that of multiset rewriting (we use, in particular, Gamma nota-
tion [Banâtre et al., 2001]).

Definition 12. A rewrite rule is a 4-tuple

rule(arg) : lms → rms ⇐ cond

where rule(arg) is an atom called rule label, lms and rms are two mul-
tisets, and cond is a sequence of elements of the form Pi ` Qi.

Notice that a substitution σ can be applied in a natural way to a rule:
σ(rule(arg) : lms → rms ⇐ cond) = rule(σ(arg)) : σ(lms) →
σ(rms) ⇐ σ(cond).

Intuitively, rules can be applied to a “target” multiset MS, if the fol-
lowing two conditions hold:

• First, the left multiset lms has to match some sub-multiset of MS;
this sub-multiset is to be replaced with (right) multiset rms;

EXPERIMENTS IN RIGHTS CONTROL 41

2.2. LANGUAGE LicenseScript

• Second, the conditions cond of the rule must hold; This is done by
executing all the queries in cond, and checking that the result is
success.

We formalize the meaning of rule execution in the next section. An exam-
ple for a rule is the following:

play(X) : lic(X, ∆, B) → lic(X, ∆, B ′)

⇐ ∆ ` canplay(B, B ′)

This rule can be applied to a license lic(X, ∆, B), replacing it with another
license lic(X, ∆, B′) if condition ∆ ` canplay(B, B ′) holds.

2.2.4 LicenseScript Execution Model
As we already mentioned, licenses are represented by terms of the form
lic(content, ∆, B). For the sake of exposure, we assume that all available
licenses are stored in a given multiset MS.

Definition 13. Rule execution. Given two multisets MS and MS’, a rule
label : l → r ⇐ cond, and an atom a (called the request action), we write
MS aσ

−→ MS’ if:

1. a matches with label, with matching σ1.

2. lσ1 matches with T ′, with matching σ2, for some sub multiset T ′ of
MS.

3. For each ∆i ` φi, i ∈ [1, n] in cond, (∆i ` φi)σ1σ2δ1 · · · δi−1

succeeds, with computed answer substitution δi;

4. MS’ is the result of removing each term in T ′ from MS, and append-
ing rσ1σ2δ1 · · · δn to it, then, σ is the composition of σ1, σ2, · · · , i.e.
σ1 ◦ σ2 ◦ · · · .

Step 1 of this definition represents the choice of a rule for executing
a given request action a (e.g., play(mus)) from the environment. Notice
that there may be more than one rule that matches with the request ac-
tion, so a first source of non-determinism appears here. The request action

42 EXPERIMENTS IN RIGHTS CONTROL

LicenseScript 2.2. LANGUAGE

can also fail if no rule matches with the request. After a rule is chosen,
Step 2 finds a set of licenses T ′ in the multiset MS to which the rule can
be applied. Again, different choices of T ′ may produce non-determinism
here. This corresponds to the possible situation in which the user pos-
sesses more than one license (or set of licenses) that allows her to effectu-
ate the desired action. In this case, we can assume that the system asks the
user which license should be used. Step 3 checks that the conditions of the
rule hold, by executing the queries with the carried out substitutions. Fi-
nally, Step 4 transforms the multiset by applying the replacement specified
by the rule.

Example 14. Consider the multiset containing the following licenses: MS
= [lic(music, Γ, C), lic(video, Σ, D)], where C = {played times ≡ 2},
D = {played times ≡ 10}, and Γ = Σ =

{canplay(B, B ′) : −

get(B, played times, N), N < 10,

set(B, played times, N + 1, B ′)}

Let R be the singleton rule set containing the following rule:

play(X) : lic(X, ∆, B) → lic(X, ∆, B ′)

⇐ ∆ ` canplay(B, B ′)

1. Suppose the environment requests the action play(music). This
will match rule play(X), giving matching σ1 = {X/music}.

2. The next step involves looking for occurrences of lic(music, ∆, B)
in MS. The only possible match is lic(music, Γ, C). This gives us
matching σ2 = {∆/Γ, B/C}.

3. Condition Γ ` canplay(C, B ′) has to be evaluated. Since variable
played times is less than 10 in C, the canplay(C, B ′) succeeds in
the Prolog program Γ, hence the condition is satisfied. We get the
computed answer substitution δ1 = {B′/played times ≡ 3}.

4. Finally, MS is updated. License lic(music, Γ, C) is removed from
MS, and replaced by lic(music, Γ, C ′), where C ′ = {played times ≡
3}.

EXPERIMENTS IN RIGHTS CONTROL 43

2.3. ELECTRONIC MUSIC DISTRIBUTION LicenseScript

Example 15. Consider the same multiset and rules of the previous exam-
ple. Suppose now request action play(video) is issued. This action, even
though has a matching rule and a matching license in the multiset, cannot
be carried out completely. This is so since, in the unique matched license
(that is, lic(video, Σ, D)) condition ∆ ` canplay(B, B ′) does not hold,
the video has been played too often.

Definition 13 describes how a multiset can evolve to another by means
of executing a rule. The precise notion of multiset execution, which can
be understood as the semantics of LicenseScript, can be then described as
sequences of rule execution.

Definition 16. Given a multiset MS and a set of rules R, an execution is
the (possibly infinite) sequence of rule applications MS

a1σ1−−→ MS1
a2σ2−−→

MS2 · · · . The trace execution of MS is defined as a1σ1 · a2σ2 · · · .

The semantics of executing a multiset and a rule set is then defined as
all possible trace executions, according to the above definitions.

2.3 Electronic Music Distribution
In this section we provide examples in Electronic Music Distribution, to
show the flexibility of LicenseScript.

2.3.1 Authorized Domains
As explained in the introduction, an authorized domain can be seen as
the collection of devices belonging to a household. In this paper we only
focus on the relationship between licenses and ADs, and we assume the
existence of an AD implementation that deals with domain and content
management issues [van den Heuvel et al., 2002], i.e. we assume the
presence of compliant devices that are governed by AD management rules.
We first show how a license can be bound to a specific domain. Consider
the following license:

lic(mus, ∆, {in domain ≡ cert})

44 EXPERIMENTS IN RIGHTS CONTROL

LicenseScript 2.3. ELECTRONIC MUSIC DISTRIBUTION

where ∆ =

{validD(B) : − get value(B, in domain, Id2),

identify(Id1), Id1 = Id2.}

Here, identify(Id1) is a primitive which is used to retrieve the identity
of the current domain. Clause validD(·) checks that the current domain
is in fact the domain to which the license is bound. A rule like play(·), for
instance, can now be defined as only valid if the license is in the allowed
domain:

play(Mus) : lic(Mus, ∆, B) → lic(Mus, ∆, B)

⇐ ∆ ` validD(B)

Now we are ready to illustrate a slightly more complex example: Con-
sider a license that allows a certain piece of music to be played only for a
limited time within the domain. This license can be written as follows:

lic(mus, ∆,

{in domain ≡ cert, expires ≡ expiration date})

where ∆ consists of the following two clauses:

validD(B) : − get value(B, in domain, Id1),

identify(Id1), Id1 = Id2.

nexpired(B) : − get value(B, expires, Exp),

today(D), D ≤ Exp.

Finally, the corresponding play(·) rule can be defined:

play(Mus) : lic(Mus, ∆, B) → play(Mus, ∆, B)

⇐ ∆ ` validD(B), ∆ ` nexpired(B)

2.3.2 Payment
To address the different forms of payment, we first model a wallet. Then,
we show how various payment methods are implemented in LicenseScript.

EXPERIMENTS IN RIGHTS CONTROL 45

2.3. ELECTRONIC MUSIC DISTRIBUTION LicenseScript

2.3.2.1 Modelling a Wallet

We model the existence of a wallet, in our approach, as a another ele-
ment of the multiset. The wallet is represented as a term of the form
wallet(∆, B), where ∆ is a Prolog program, and B are a set of bindings.
Similarly to licenses, in the wallet we have clauses that allow rules to per-
form operations over the wallet. We assume that one binding named m,
which represents the amount of money in the wallet, is always in B.

A clause that may reside in ∆ is canload(·), which is used to load or
increase the balance of the wallet, as can be shown as follows:

canload(A, B, B ′) : −

get value(B, m, M), set value(B, m, M + A, B ′).

where A is the amount of money the user likes to load onto the wallet.
Using clause canload(·), a rule that loads money into the wallet can

now be written:

load(Amount) : wallet(∆, B) → wallet(∆, B ′)

⇐ ∆ ` canload(Amount, B, B ′)

Another useful clause in the wallet is cantransfer(·), used to transfer
a certain amount of money to another entity (e.g., a content provider):

cantransfer(P, A, B, B ′) : −

get value(B, m, M), A ≤ M,

set value(B, m, M − A, B ′), transfer(P, A).

where primitive transfer(P, A) models the money transfer to entity P of
the amount of money A.

2.3.2.2 Payment Methods

There are at least three common alternatives paymen models, as described
in [Gunter et al., 2001]: (1) pay per-use, a payment is issued each time the
content is used; (2) pay upfront, the content can be used after the payment
has taken place, for a period of time p; and (3) pay flatrate: The content is

46 EXPERIMENTS IN RIGHTS CONTROL

LicenseScript 2.3. ELECTRONIC MUSIC DISTRIBUTION

used, and then the payment must be made at the end of the content usage
We now illustrate the implementation of the pay per-use and pay upfront
methods in LicenseScript. We leave aside pay flatrate, as it is similar to
pay per-use.

Pay Per-Use We can model pay per-use in LicenseScript by means of
including in a license the following clause canplay(·):

canplay(P, A, B) : −

get value(B, provider, P),

get value(B, amount, A).

where provider is the binding representing the content provider, while
binding amount represents the cost to play music track. Intuitively, clause
canplay returns the price of the content in A and the provider who should
receive the payment, in variable P . This allows a rule calling this clause
to perform the required payment:

play(Mus) : lic(Mus, ∆, B), wallet(Γ, C) →

lic(Mus, ∆, B), wallet(Γ, C ′)

⇐ ∆ ` canplay(P, A, B),

Γ ` cantransfer(P, A, C, C ′)

Here, clause canplay(P, A, B) retrieves P and A, which clause cantransfer
(P , A, C, C ′) uses to perform the actual money transfer.

Pay Upfront For modelling this payment method, we need to use two
different clauses and rules, since the actual payment and content usage
may differ in time: the payment is first done, and only later the content is
used.

EXPERIMENTS IN RIGHTS CONTROL 47

2.3. ELECTRONIC MUSIC DISTRIBUTION LicenseScript

We first define a clause canpay(·) for paying as follows:

canpay(P, A, B, B ′) : −

get value(B, paid, Paid), Paid = false,

get value(B, provider, P),

get value(B, amount, A), today(D),

set value(B, period, D + fp, B ′),

set value(B, paid, true, B ′).

Here, binding paid is a flag that represents whether the content has already
been paid or not. Binding period is used to store the allowed period of
time for playing the content, and constant fp represents the period of time
in which the content can be accessed after the payment.

Clause canpay(Provider, Amount, B, B ′) first checks that the pay-
ment has not been done yet. It then returns the value of the provider and
the amount in variables Provider and Amount. After this, the period
of allowed use is set appropriately, and finally flag paid is set to true,
indicating the payment.

Using the above clause we can define the rule for pay upfront:

pay(Mus) : lic(Mus, ∆, B), wallet(Γ, C)

→ lic(Mus, ∆, B′), wallet(Γ, C ′)

⇐ ∆ ` canpay(Provider, Amount, B, B ′),

Γ ` cantransfer(Provider, Amount, C, C ′)

Now, we can define the canplay(·) clause for action play, which will
allow the content to be played only if the payment has been done, and the
allowed period of time has not expired:

canplay(B) : −

get value(B, paid, Paid), Paid = true,

today(D), get value(B, period, P), D ≤ P.

Finally, we define the rule for play(·):

play(Mus) : lic(Mus, ∆, B) → lic(Mus, ∆, B)

⇐ ∆ ` canplay(B)

48 EXPERIMENTS IN RIGHTS CONTROL

LicenseScript 2.3. ELECTRONIC MUSIC DISTRIBUTION

2.3.3 Clipping Licenses
Suppose a user who has purchased a music track from a content provider
requires some comments from other users. In LicenseScript, she can clip
the license, and then she can send the clipped licenses to other people as
a preview or recommendation. Notice that this operation splits the license
but not the content.

The license in question looks like this:

lic(mus, ∆, {start ≡ 0, end ≡ mus length})

where ∆ contains the following canclip(·) clause:

canclip(S, E, B, B′) : −

get value(B, start, OS),

get value(B, end, OE), S ≥ OS,

E ≤ OE, set value(B, start, S, B ′),

set value(B, end, E, B ′).

Bindings start and end are markers that indicate the head and tail of the
music track.

The corresponding rule for clip operation can now be defined:

clip(S, E, Mus) : lic(Mus, ∆, B) →

lic(Mus, ∆, B), lic(Mus, ∆, B ′)

⇐ ∆ ` canclip(S, E, B, B ′)

Note that the content is still the same, full-length here; only the start
and end markers are modified. A different clip operation that includes
the actual production of a new, clipped content, would need the use of a
primitive that performs the operation.

A special case of the clipping operation occurs when we want to dupli-
cate a license. This operation is often needed. In fact, one of the primary
requirements of LicenseScript architecture is that devices do not have to
be always on: in particular, we do not want the system to be dependent
from the reacheability and the availability of domain server. To imple-
ment correctly the concept of authorized domain, we then have to be able

EXPERIMENTS IN RIGHTS CONTROL 49

2.4. RELATED WORK LicenseScript

to duplicate licenses. Consider for instance the situation of a person that
has the license for listening to a piece of music within his home and who
rightfully wants to listen to it also while driving her car. If devices are
not always on, then the car device might be incapable of checking on the
home server for the presence of the right license. Therefore, there has to
be a license for the music in the car device as well, and this is possible
only if we can duplicate licenses. Thus, by allowing users to duplicate
the licenses confined in their authorized domain without any restrictions
provide a broad freedom for the users to listen to the music whenever,
wherever and however they like.

2.4 Related Work

In this section, we briefly discuss the related work. As mentioned in sec-
tion 2.1, there are several XML-based RELs proposed, the most prominent
being XrML and ODRL. The crucial difference between LicenseScript
and XML-based RELs, is that the former is a (Turing-complete) language,
while the latter are only suitable to describe a set of constraints, the se-
mantics of which is given by the implementation algorithm. This makes it
very difficult to compare the two approaches. A sure problem with XML-
based RELs is that their syntax becomes intricated when the scenarios of
licensing and content usage patterns becomes complex. As a result, the li-
cense may expand drastically in size. We aim to render the LicenseScript
lightweight to be fit into small devices, i.e. with limited resources (CPU,
memory, etc.). Eventually, we could compile XrML and ODRL into Li-
censeScript (which can be thought of as an “intermediate code”) to be
accommodated in small devices. LicenseScript, being executable, allows
to formulate complex policies in a succinct manner like: Pay 1USD to
videos.com when you view this video for the first time; each subsequent
time that you view this video the cost drops by 105. After ten times, the
video becomes free. To the best of our knowledge, to implement such a
policy in XrML one needs to define an extension of the language, and
needs to provide an implementation to it.

On the other hand, we found other concepts that are easily expressed
in XrML or ODRL but would require much more work in LicenseScript.

50 EXPERIMENTS IN RIGHTS CONTROL

LicenseScript 2.4. RELATED WORK

Consider, for instance, the use of role based access control in ODRL. This
allows one to specify, for example, “any student of this university may lis-
ten to the local university radio.” Here, the right to listen to the radio is
assigned to the role “student”, and not to each physical student. Then,
there is no need to deal with identification or authorization mechanisms at
the specification level. In LicenseScript, on the other hand, this would not
be possible because there is no way to “abstract” such high-level descrip-
tions. In this specific case, to support role based access control we would
need to implement identification and authorization procedures (possibly
using a PKI infrastructure) in the same license.

Gunter et al. [2001] from InterTrust Technologies Corporation and Pu-
cella and Weissman [2002] from Cornell University present two logics for
licenses. By borrowing techniques from programming semantics [Gunter,
1992], Gunter et al. develop a model and a language for describing li-
censes. Their logic consists of a domain of sequences of events called re-
alities. An event is modelled as a pair of a time value and an action. Note
that only one event is allowed at a time. A finite set of events is embodied
in a reality. A license, then, is a set of realities. Most licenses consist of
infinitely many realities in order to allow the use of a work at one or more
of infinitely many times during some period. Using the proposed model,
Gunter et al. formularize several standard license types, which they call
simple licenses. They are the same that we have treated in this paper: sim-
ple licenses are “Up Front”, “Flat Rate” and “Per Use”. Simple licenses
can be used as the building blocks of more complex licenses.

Pucella and Weissman [2002] follow up Gunter et al.’s effort. They
propose 3 syntactic categories: (1) action expression, (2) license, and (3)
formula. The action expressions are either permitted or obligatory. In
other words, they reason about the licenses and the user’s actions with
respect to the licenses; this is done by means of a temporal deontic logic.
This distinction is what makes their logic more accessible and complete
than Gunter et al.’s. A license is an action sequence (not to be confused
with an action expression). A formula designates an action sequence that
is valid for a license. At most, one action per time per license can occur.

LicenseScript uses multiset rewriting which is more expressive than
the denotational semantics of Gunter et al. LicenseScript is also readily
subject to logical parallelism. Pucella et al.’s logic is only a starting point,

EXPERIMENTS IN RIGHTS CONTROL 51

2.5. CONCLUSIONS AND FUTURE WORK LicenseScript

with the assumption of one client and one provider and therefore definitely
does not cater for concurrency, like LicenseScript does. To state the ob-
vious, Pucella et al. also have not yet taken into account the malleability
of licenses and contents (e.g. as a result of “clipping” and “mixing”), and
the concepts of authorized domains.

2.5 Conclusions and Future Work
We propose LicenseScript, a novel digital rights language based on mul-
tiset rewriting and logic programming. We present the design of the lan-
guage using a scenario that represents an elaborate pattern of content use.

LicenseScript differs from other RELs in that it has an explicit static
and dynamic part. The terms and conditions on content form the static
part. These terms and conditions usually derive from legal, regulatory
and business rules, and are therefore appropriately expressed using Prolog
clauses [Sergot et al., 1986]. A license is used in a changing context and
must therefore have the ability to evolve. The dynamics are represented
by interpreting a license as an element of a multiset to which multiset
rewrite rules are applied. These rules represent the way in which the con-
text (devices and systems) act upon licences. The dual nature of a license
(static versus dynamic) is thus represented by a two-tier structure of Li-
censeScript. The two levels are linked by a set of bindings that represents
the current state of the evolution.

As future work, we are currently implementing the language, using
an existing DRM platform [Chong et al., 2002]. Furthermore, we plan
to study in detail relevant legal, regulatory and business cases to ensure
that the language is convenient to use. Licenses evolution is an interesting
issue, and we plan to investigate this point further. Formal verification of
license properties (e.g., safety) in a given multiset and rule set, could allow
us to reason more precisely about what a license is supposed to achieve
and what actually allow.

52 EXPERIMENTS IN RIGHTS CONTROL

CHAPTER 3

USAGE SCENARIOS

Comparing Logic-based and XML-based
Rights Expression Languages2

Cheun Ngen Chong, Sandro Etalle, and Pieter Hartel

Abstract Several rights expression languages (RELs) have been pro-
posed to describe licenses governing the terms and conditions of content
access. In this field XrML and ODRL play a prominent role. Both lan-
guages are powerful yet complex. In this paper we propose a way of
analysing RELs and we apply it to ODRL, XrML and to LicenseScript, a
REL we propose. In addition, we test these languages against a number
of example scenarios. These examples bring new insights, and shed new
light on some of the limits of XrML and ODRL.

2This chapter has been published in Proceedings of On The Move to Meaningful
Internet Systems 2003: OTM 2003 Workshops, volume 2889 of LNCS, 2003, pages
779–792, Springer-Verlag.

53

3.1. INTRODUCTION Usage Scenarios

3.1 Introduction

Right expression languages (RELs) are languages devised specifically to
express the condition of use of digital content in general, and of multime-
dia in particular. RELs can for instance be used to describe an agreement
between a content provider and an music distributor, or to express the
copyright associated to a given piece of music, by specifying under which
conditions the user is allowed to play, broadcast, or copy it.

In the vast scene of multimedia delivery, two RELs in particular have
attained a prominent position: XrML [Guo, 2001] and ODRL [Iannella,
2001]. The eXtensible rights Markup Language (XrML) (http://www.
xrml.org) is proposed and maintained by ContentGuard, Inc. (http://
www.contentguard.com), and has its roots in the Stefik’s Digital Prop-
erty Rights Language. XrML is adopted by Microsoft in Windows Me-
dia Player 9. The Open Digital Rights Language (ODRL) (http://www.
odrl.net) was proposed by Iannella from IPR Systems Ltd. (http://
www.iprsystems.com). ODRL is endorsed by the Open Mobile Alliance
(OMA) (http://www.openmobilealliance.org).

XrML and ODRL have many similarities: syntactically they are both
based on XML while structurally they both conform to the Stefik’s ax-
iomatic principles of rights modelling (http://www.oasis-open.org/
cover/DPRLmanual-XML2.html).

XML-based RELs, however, have some intrinsic disadvantages: (1)
the syntax is complicated and obscure when the conditions of use be-
come complex, (2) these languages lack a formal semantics [Pucella and
Weissman, 2002; Gunter et al., 2001], i.e. the meaning of licenses relies
heavily on human interpretation, and (3) the languages cannot express
many useful copyright laws [Mulligan and Burstein, 2002]. To address
these problems we have proposed a new, logic-based REL, named Licens-
eScript [Chong et al., 2003a]. LicenseScript has a declarative as well a
procedural reading (i.e., can be used as a programming language), which
makes it possible to capture a multitude of sophisticated usage patterns
precisely and unambiguously.

LicenseScript provides an approach to RELs which is diametrically
opposite to that of XrML and ODRL: it is logic-based rather than XML-
based. This makes it difficult to make an objective assessment and com-

54 EXPERIMENTS IN RIGHTS CONTROL

Usage Scenarios 3.2. ANATOMY OF RELS

parison of the two REL styles. Such an objective assessment is important
for a clear understanding of the advantages and the limitation of XrML
and ODRL. Last but not least, it must be noted that making such assess-
ment is far from trivial, as ODRL and XrML specifications are huge and
complex.

This paper aims (at least partially) at solving the aforementioned prob-
lem (i.e. complexity of XML-based RELs). Our contribution is twofold:
first, we develop an anatomy of the RELs, then we apply it to ODRL,
XrML and LicenseScript; secondly, we analyse in depth a number of ex-
amples, which we have coded in LicenseScript as well as in ODRL and
XrML. In our opinion, these examples bring new insights, and shed new
light on some of the weaknesses of XrML and ODRL.

The organization of the remainder paper: Section 3.2 discusses the
anatomy of the RELs. Section 3.3 describes briefly the LicenseScript lan-
guage to make the paper self-contained. Section 3.4 discuss the results of
our studies on the scenarios specified in XML-based RELs. Section 3.5
describes some of the novel scenarios in LicenseScript. Lastly, section 3.6
concludes the paper and presents future work.

Note: The reader may refer to our detailed studies of XML-based
RELs scenarios in our Technical Report version of this paper [Chong et al.,
2003c]. The appendix in the Technical Report lists the LicenseScript code
of the XML-based RELs scenarios.

3.2 Anatomy of RELs

To aid the comparison of RELs we propose an anatomy of the RELs.
Based on Stefik’s axiomatic principles, the XrML and ODRL specifica-
tions, and the requirements of RELs proposed by Parrott [2001], we con-
clude that RELs have a structure which is shown in Fig. 3.1. The figure is
presented in the form of a class diagram because this exhibits the logical
relations between the components. This figure provides an abstract view
of a REL.

We identify four main components, namely subject, object, operation,
and constraint. We explain these components in section 3.2.1. Each of
these components is logically related to other components. We elaborate

EXPERIMENTS IN RIGHTS CONTROL 55

3.2. ANATOMY OF RELS Usage Scenarios

these relations in section 3.2.2. The components and the relations estab-
lished within support a wide variety of models of the rights management
systems. We elaborate the models in section 3.2.3. Most what follows
come from the existing material, which includes Parrott [2001] and XML-
based RELs specification, but we explicitly indicate the additional features
of a REL.

Subject Operation

ConstraintObject

Naming

Association
Association Limitation

Characteristic

Ordering

implicit relation

explicit relation

Figure 3.1: The components and their relations in a REL.

3.2.1 Components
From Parrott’s requirements of RELs [Parrott, 2001] and the XML-based
RELs specification, we conclude that there are four main components in
a REL, namely (1) subject, which is an actor who performs some oper-
ations; (2) object, which is the content acted upon by a subject; (3) op-
eration, which is what a subject can do to an object; and (4) constraint,
which describes when an operation can be performed. There are two types
of operation: a right is an operation that can be performed directly on the

56 EXPERIMENTS IN RIGHTS CONTROL

Usage Scenarios 3.2. ANATOMY OF RELS

object; and an obligation is an operation that must precede or follow an-
other operation. As an illustration consider the following:

Example 17. Alice wants to play a high-quality movie three times, she
must pay $5 upfront.

Intuitively, the subject is “Alice”, the objects are “movie” and “$5”,
the right is “play”, the obligation is “pay”, and the constraints are “high-
quality”, “for three times” and “upfront”.

A REL typically describes the subject by naming, e.g. “Alice”. Ad-
ditionally, the REL must be able to distinguish the type of the subject by
using the names, e.g. creator, end-user, distributor and so on. A REL must
also be able to specify the identification mechanism employed by common
rights management systems to describe the subject, e.g. a digital certificate
and public key . This is discussed in section 3.2.3.

A REL uses names to describe an object, such as the title of the ob-
ject or the artist. A REL is required to support (1) generalized types of
objects, for instance, multimedia (e.g. MP3), personal data (e.g. DOC) or
meta-data (e.g. XML); (2) classification of similar objects, for instance,
“publisher Addison’s ebooks”; (3) fuzzy (or implicit) matching criteria of
the object, for instance, “looks like” and “sounds like”; and (4) the deliv-
ery methods of the object, for example, by downloading, streaming or by
means of physical storage (e.g. CD).

As mentioned earlier, there are two types of operation: right and obli-
gation. There are various types of rights identified by Rosenblatt et al.
[2002]: (1) Render right, which indicates a set of rights in which the ob-
ject can be consumed, e.g. play; (2) Reuse right, which indicates a set of
rights in which the object can be re-utilized, e.g. modify. (3) Transport
right, which indicates a set of rights in which the subject’s rights over the
object can be transferred, e.g. lend. (4) Object management, which indi-
cates a set of rights to handle the management over the object, e.g. move
and duplicate. None of these rights cover the regulation of the rights them-
selves. Therefore, in addition, we propose a further set of rights, namely
(5) Rights regulation, which indicates a set of rights that regulate the sub-
ject’s rights over the object, e.g. update and renew.

A REL should be capable of describing different obligations. An obli-
gation may be an operation that enables or activates the rights over the

EXPERIMENTS IN RIGHTS CONTROL 57

3.2. ANATOMY OF RELS Usage Scenarios

objects. The pay and register operations are two common examples.
Parrott [2001] and XML-based RELs specifications recognize several

common constraints: (1) temporal, such as date and time (e.g. the ebook
can be viewed before 20 March 2004); accumulated (e.g. the ebook can
be viewed for 2 weeks); and interval (e.g. the ebook can be viewed within
20 days from the time of issuing this license); (2) bound, for instance, the
number of distinct times the ebook can be viewed, and the range of the
page numbers of the ebook that can be printed; (3) environment, which
may be a physical environment (e.g. geographic territory) or logical envi-
ronment (e.g. network address or system environment); (4) aspect, which
mainly relates to the technical perspectives of the object, for example,
quality and format of the content; (5) purpose, for instance, educational
purpose and commercial reason. There may be more unique constraints
required when new scenarios emerge.

We introduce another constraint, namely the status constraint. Real
time content access requires this constraint to indicate the current state,
e.g. availability and accessibility of the content at the time the rights are
exercised.

XrML and ODRL are able to represent render, reuse, transport, and
object management rights. However, XrML and ODRL do not accommo-
date (explicitly) the descriptions of rights that regulate other rights. For
example, “a user can renew the rights to play a movie within a fixed period
(after the expiry time of the rights) with a discount”. However, XrML and
ODRL do cater for the revocation of rights and obligations. XrML does
not provide explicit facilities to specify the purpose constraints. ODRL
and XrML cannot express the status of the object. However, LicenseScript
is able to accommodate most (if not all) the listed constraints.

3.2.2 Relations

A REL must specify relations between components. As can be seen in
Fig. 3.1, there are two distinct types of relations, namely explicit relations
and implicit relations. We use example 17 to elaborate some of the rela-
tions discussed in this section.

Parrott [2001] identifies two classes of explicit relations, namely or-
dering relation, e.g. “pay $5 before play the movie” (operation–operation);

58 EXPERIMENTS IN RIGHTS CONTROL

Usage Scenarios 3.2. ANATOMY OF RELS

and association relation, “Alice owns the movie” (subject–object) and “play
is for movie” (operation–object). The ordering relation describes how
operations are linked. For example, “pay before play” is an example of
antecedent obligation; and “play then pay” is an example of consequent
obligation. An ordering can be total or partial. A total ordering fully spec-
ifies the order of all operations, for example, “register, pay and then play”.
A partial ordering implies there is no explicit order between all items, for
example, “register and then play, user can pay before or after”. The asso-
ciation relation covers the subject–object and operation–object relations.

We identify three additional types of explicit relations, namely, (1)
naming relation (subject–operation), which specifies the name of the op-
eration the subject can perform, e.g. “Alice plays the music”; (2) limitation
relation, which implies that the operations are restricted by the constraints,
in the same example, (constraint–operation); and (3) characteristic rela-
tion (constraint–object), which describes the object (that the operations
can be acted upon), e.g. “high-quality movie”.

We also identify several implicit relations (see Fig. 3.1), which in-
clude: subject–subject, subject–constraint, object–object, and constraint–
constraint. These implicit relations are embedded and indirect. To elabo-
rate these relations, we use two additional examples:

Example 18. Alice needs Bob to prove her identity so that she can play
the movie.

Example 19. Alice can reuse the image in the ebook on her Web site, for
educational purpose and for 2 years.

Example 18 exhibits the implicit subject–subject relation between “Al-
ice” and “Bob”, as well as implicit subject–constraint between “Alice” and
“prove her identity”. Example 19 exhibits implicitly the object–object re-
lations between the “image” and “ebook”, and the constraint–constraint
relations between the “educational purpose” and “2 years”.

3.2.3 Models
A model describes a typical way of using a REL; we can distinguish: (1)
revenue model, (2) provision model, (3) operational model, (4) contract

EXPERIMENTS IN RIGHTS CONTROL 59

3.2. ANATOMY OF RELS Usage Scenarios

model, (5) copyright model and (6) security model. A rights management
system may exhibit different models simultaneously.

The revenue model, is normally related to the payment architecture of
the system. There are myriad of revenue models, for example, pay-per-
use, pay-upfront, pay-flatrate, tiered payment (e.g. free now pay later),
pay to multi-entities (e.g. pay half to publisher and half to distributor),
and fraction payment (e.g. discount and tax). New revenue models emerge
every day.

The provision model may provide an alternative solution more than
yes or no to the situations when the rights and obligations fail to meet
the constraints. For instance, if viewing a high-resolution video is not al-
lowed, it should be possible to switch to low-resolution video. Addition-
ally, the provision model should be able to reconcile the conflicts caused,
for example, when there is more than one subject performing the same
operation on the same object simultaneously. The provision model also
accommodates the default settings of operations over an object when the
object is not associated with any operations.

The security model defines a variety of security mechanisms, for in-
stance, identification, authentication and authorization (IAA), access con-
trol, non-repudiation, integrity, audit trails and privacy.

The operational model handles the technological aspects of the sys-
tem, such as quality-of-service, watermarking, caching, network opera-
tions, bandwidth and other operational aspects of the system.

The contract model establishes the agreement of the terms and condi-
tions (over the operations offered over the object and constraints) estab-
lished between different subjects.

We include the copyright model in this category because the copy-
right enforcement from the user’s standpoint is always a source of contro-
versy [Camp, 2002]. The copyright model enforces copyright acts (espe-
cially from the end-user’s standpoint), such as fair use, first sale and so
on.

Not all RELs are able to support the 6 revenue models above. XrML
and ODRL are not able to support the provision model of reconciling the
rights conflicts. This model handles the dynamic license evolutions and
content access patterns. XrML and ODRL are static RELs that are not
sufficiently flexible to meet this requirement.

60 EXPERIMENTS IN RIGHTS CONTROL

Usage Scenarios 3.3. LICENSESCRIPT LANGUAGE

None of the RELs can as yet support the copyright model [Samuelson,
2003]. However, Mulligan and Burstein [2002] provide several sugges-
tions to incorporate copyright into the XML-based RELs. We address this
issue as our future work.

In the following section, we describe concisely the LicenseScript lan-
guage using a simple scenario as an example.

3.3 LicenseScript Language
LicenseScript is a language that is based on (1) multiset rewriting, which
captures the dynamic evolution of licenses; and (2) logic programming,
which captures the static terms and conditions on a license. LicenseScript
provides a judicious choice of the interfacing mechanism between the
static and dynamic domains.

Multiset

Rules

Content

Bindings

Old License

Clauses

Content

Bindings

New License

Clauses

Operation

1

2

3

Query
4

5

Figure 3.2: Transformation of licenses with content and bindings caused by rules.

A license specifies when certain operations on the object are permitted

EXPERIMENTS IN RIGHTS CONTROL 61

3.3. LICENSESCRIPT LANGUAGE Usage Scenarios

or denied. The license is associated with the content, as can be seen in
Fig. 3.2. A license carries bindings, which describe the attributes of the
license; and the clauses, which determine if a certain operation is allowed
(or forbidden). The license clauses consult the license bindings for their
decision making and may also alter the values of the license bindings.

Licenses are bound to the terms that reside in multisets. For the spec-
ification of the licenses, we use logic programming. The readers are thus
assumed to be familiar with the terminology and the basic results of the
semantics of logic programs.

Fig. 3.2 illustrates that 1© an operation (performed by a subject) 2© in-
vokes a rule, which in turns picks the required license in the multiset. The
rule then generates and executes a 3© query on the license 4© clauses. The
5© execution result of the rule is a newly generated license. We elaborate
this transformation process later by using a simple scenario.

Now we use a simple illustrative scenario to explain the LicenseScript:

Example 20. Amanda gets an ebook, titled “A Book” from Ben Publisher.
Ben issues a license with an expiry date fixed at “23/06/2004”.

This license allows Amanda to print two copies of the ebook (L01,
..., L14 are line numbers included for reference purposes, they are not
part of the code):

license(ebook:a_book, L01
[(canprint(B1,B2,User) :- L02

get_value(B1,consumer,C), L03
C = User, L04
get_value(B1,expires,Exp), L05
today(D), D>Exp, L06
get_value(B1,printed,P), L07
get_value(B1,max_prints,Max), L08
P < Max, L09
set_value(B1,printed,P+1,B2)], L10

[(company=ben_publisher), L11
(consumer=amanda), L12
(expires=23/06/2004), L13
(max_prints=2), (printed=0)]) L14

A license is represented by a term of the form license (content,
C, B), where content is a unique identifier referring to the object of

62 EXPERIMENTS IN RIGHTS CONTROL

Usage Scenarios 3.3. LICENSESCRIPT LANGUAGE

the license; C is a list of license clauses (i.e. Prolog programs) describing
under which circumstances the operations are permitted or denied; and
B is a list of license bindings capturing the attributes of the license. We
define two multiset-rewrite rules, as shown below, to model the interface
between the system and the licenses. The rules can be thought of as a
firmware in the user’s system.

The syntax of the rules is based on the Gamma notation [Banâtre et al.,
2001] of multiset rewriting (again, R01,...,R04 are line numbers):

print(Ebook,User) : R01
license(Ebook,C,B1) -> R02
license(Ebook,C,B2) R03

<= C |- canprint(B1,B2,User) R04

We will step through the example assuming Amanda would like to
print the eBook with the available license on her system:

1. Amanda’s system wants to know whether she has the print right on the
ebook. This is achieved by applying the print rule (line R01) with appro-
priate parameters: print(ebook: a book,amanda).

2. The rule finds the license(ebook:a book,[...],[...]) (line
R02, line L01) in the system. The first list refers to the license clauses
(lines L02–L14), while the second list refers to the set of license bindings
(lines L15–L18).

3. The rule then executes a query in the form of canprint(B1,B2,User)
(line R04), where B2 designates the output generated by the query; This
will form a new set of license bindings.

4. The license interpreter retrieves the value of the license binding consumer
from the list of license bindings B1 (line L03) and compares the retrieved
value with the user identity User (line L04). User is passed in as an
argument to the license clause (line L02).

5. Similarly, the interpreter retrieves the value of the binding expires (line
L05).

6. The interpreter calls the primitive (which is discussed later) today(D)
(line L06) to obtain the current time and date.

EXPERIMENTS IN RIGHTS CONTROL 63

3.4. XML-BASED RELS SCENARIOS Usage Scenarios

7. The expiry date of the license must be greater than current time and date
(line L07).

8. Similarly, the value of printed is checked if it is smaller than the value
of max prints (lines L07–L09).

9. If all conditions are satisfied (the user is valid, the license has not expired
and the number of printed copies does not exceed the allowable maximum
copies), the query returns yes (line R04) to the interpreter, with the newly
generated license bindings in B2.

10. The value of the license binding printed is incremented (line L10) ev-
ery time the print operation succeeds.

11. The value yes indicates that the execution of canprint(B1,B2,User)
yields success in the license clauses C.

12. The rule print(Ebook,User) generates a new license with the newly
generated license bindings license(Ebook,C,B2) (line R03).

The primitive get value(B,n,V) is to report in V the value of
n from B; whereas the primitive set value(B1,n,V,B2) is to give
value V to n in B2. In addition, we use a number of primitives to model
the interface of the system with the license (interpreter), for instance: (1)
today(D), to bind D to the current system date/time; and (2) identify
(L), to identify the current environment to L. For further details of the
LicenseScript language, see Reference [Chong et al., 2003a].

3.4 XML-based RELs Scenarios

As mentioned in section 3.1, LicenseScript is intrinsically distinct from
XrML and ODRL. To help comparing them, we have studied 20 scenarios
from the XML-based RELs documentation.

Table 3.1 and Table 3.2 summarizes the analysis of all the scenarios
that we have studied. The (rotated) rows of the table correspond to the
anatomy presented in section 3.2. The (rotated) columns correspond to
the scenarios, which are:

64 EXPERIMENTS IN RIGHTS CONTROL

U
sage

Scenarios
3.4.

X
M

L
-B

A
SE

D
R

E
L

S
SC

E
N

A
R

IO
S

Anatomy ODRL Scenarios Novel Scenarios
Categories E1 E2 E3 VD SD SW IM AD PS LM

Right-Render 3 3 3 3 3 3 3 3 3 3

Right-Reuse 3 3 3

Right-Transport 3 3 3 3 3

Right-Manage Object 3 3

Right-Regulation Right 3

Obligation 3 3 3 3

Object-General 3 3 3 3 3 3 3 3 3 3

Object-Class
Object-Delivery 3 3 3 3 3

Object-Fuzzy

Subject 3 3 3 3 3 3 3 3 3

Constraint-Temporal 3 3 3 3 3 3

Constraint-Bound 3 3 3 3 3 3

Constraint-Environment 3 3 3

Constraint-Aspect 3 3

Constraint-Purpose 3

Constraint-Status 3

Relation-Ordering-Ant. Obligat. 3 3 3 3 3 3

Relation-Ordering-Con. Obligat.
Relation-Ordering-Total
Relation-Ordering-Partial
Relation-Association 3 3 3 3 3 3 3 3 3 3

Relation-Naming 3 3 3 3 3 3 3 3 3

Relation-Limitation 3 3 3 3 3 3

Relation-Characteristic 3 3

Model-Revenue 3 3 3 3 3 3

Model-Provisional-Conflicts 3 3

Model-Provisional-Alternative
Model-Provisional-Default
Model-Operational
Model-Contract 3 3 3 3 3 3 3 3

Model-Copyright
Model-Security-IAA 3 3 3 3 3 3 3 3 3

Model-Security-Access Control 3

Model-Security-Confidentiality
Model-Security-Nonrepudiation
Model-Security-Integrity
Model-Security-Audit Logging 3

Table
3.1:T

he
properties

ofthe
usage

scenarios
specified

in
O

D
R

L
and

the
novel

scenarios
(T

he
sym

bol‘3
’indicates

the
scenario

exhibits
the

corresponding
fea-

ture).

E
X

P
E

R
IM

E
N

T
S

IN
R

IG
H

T
S

C
O

N
T

R
O

L
65

3.4.
X

M
L

-B
A

SE
D

R
E

L
S

SC
E

N
A

R
IO

S
U

sage
Scenarios

Anatomy XrML Scenarios
Categories PP SB TR TO PW SL PL GV SD US PC WS SW CR OM SV

Right-Render 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Right-Reuse 3 3

Right-Transport 3 3 3 3

Right-Manage Object 3 3

Right-Regulation Right

Obligation 3 3 3 3 3 3 3 3

Object-General 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Object-Class 3 3

Object-Delivery 3 3 3 3 3 3 3 3 3 3 3

Object-Fuzzy

Subject 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Constraint-Temporal 3 3 3 3 3 3 3 3 3

Constraint-Bound 3 3

Constraint-Environment 3 3 3 3

Constraint-Aspect 3

Constraint-Purpose
Constraint-Status

Relation-Ordering-Ant. Obligat. 3 3 3 3 3

Relation-Ordering-Con. Obligat.
Relation-Ordering-Total 3 3

Relation-Ordering-Partial 3 3

Relation-Association 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Relation-Naming 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Relation-Limitation 3 3 3 3 3 3 3 3 3

Relation-Characteristic 3

Model-Revenue 3 3 3 3 3 3

Model-Provisional-Conflicts
Model-Provisional-Alternative
Model-Provisional-Default
Model-Operational 3

Model-Contract 3 3 3 3 3 3 3 3 3 3 3 3 3

Model-Copyright
Model-Security-IAA 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Model-Security-Access Control
Model-Security-Confidentiality 3

Model-Security-Nonrepudiation 3 3 3 3 3 3 3 3 3 3

Model-Security-Integrity 3 3

Model-Security-Audit Logging 3 3 3 3 3

Table
3.2:

T
he

properties
of

the
usage

scenarios
specified

in
X

rM
L

(T
he

sym
bol

‘3
’indicates

the
scenario

exhibits
the

corresponding
feature).

66
E

X
P

E
R

IM
E

N
T

S
IN

R
IG

H
T

S
C

O
N

T
R

O
L

Usage Scenarios 3.4. XML-BASED RELS SCENARIOS

• ODRL scenarios, which are specified in ODRL specification (http:
//odrl.net/1.1/ODRL-11.pdf):
ebook #1 (E1), #2 (E2), #3 (E3), video (VD), super distribution
(SD), software(SW), image(IM) and audio(AD);

• XrML scenarios, which are specified in XrML Use Case Examples
(http://www.xrml.org/spec/2001/11/ExampleUseCases.htm):
preview/promotional (PP), subscription (SB), territory restriction (TR),
temporal ordering of rights (TO), usage of part of a work (PW), site
license (SL), personal lending (PL) and giving (GV), super distri-
bution (SD), unrestricted sales (US), personal copies (PC), web ser-
vice access (WS), software execution (SW), confidentiality of rights
(CR), operational model (OM) and secure device (SV).

• The last two columns refer to two novel scenarios, namely project
documents sharing (PS) and license evolution modelling (LM), which
we will discuss later.

We have translated the scenarios listed in Table 3.1 and Table 3.2 in
LicenseScript. Table 3.3 shows the capabilities of XML-based RELs and
LicenseScript from our studies of the usage scenarios. We put a ‘3’ where
we can show that XML-based RELs and LicenseScript cover the corre-
sponding feature of the REL.

Here, we list the conclusions from conducting the analysis of XML-
based RELs scenarios:

1. LicenseScript can render most of the aspects of XML-based RELs,
for instance, payment, user authentication etc., distinct and explicit
by using the primitives and the license clauses. We use user authen-
tication as an example: in XML-based RELs, the user identity (e.g.
certificate, public key, etc.) is described by using XML tags. In Li-
censeScript, we use license binding to carry the user identity and use
(in)equalities in the license clauses to model the user authentication
explicitly.

2. LicenseScript can capture the dynamic license (along with the con-
tent) transformation caused by the operations by using the rules. For
instance, we can model the transformation of an offer to a license,

EXPERIMENTS IN RIGHTS CONTROL 67

3.4. XML-BASED RELS SCENARIOS Usage Scenarios

Anatomy XrML ODRL LS
Right-Render 3 3 3

Right-Reuse 3 3 3

Right-Transport 3 3 3

Right-Manage Object 3 3

Right-Regulation Right 3

Obligation 3 3 3

Object-General 3 3 3

Object-Class 3 3

Object-Delivery 3 3 3

Object-Fuzzy

Subject 3 3 3

Constraint-Temporal 3 3 3

Constraint-Bound 3 3 3

Constraint-Environment 3 3 3

Constraint-Aspect 3 3 3

Constraint-Purpose 3 3

Constraint-Status 3

Relation-Ordering-Ant. Obligat. 3 3 3

Relation-Ordering-Con. Obligat. 3

Relation-Ordering-Total 3 3

Relation-Ordering-Partial 3 3

Relation-Association 3 3 3

Relation-Naming 3 3 3

Relation-Limitation 3 3 3

Relation-Characteristic 3 3 3

Model-Revenue 3 3 3

Model-Provisional-Conflicts 3

Model-Provisional-Alternative
Model-Provisional-Default
Model-Operational 3 3

Model-Contract 3 3 3

Model-Copyright
Model-Security-IAA 3 3 3

Model-Security-Access Control 3

Model-Security-Confidentiality 3 3

Model-Security-Nonrepudiation 3 3

Model-Security-Integrity 3 3

Model-Security-Audit Logging 3 3

Table 3.3: The capabilities of XML-based RELs and LicenseScript (LS) con-
cluded from studying the usage scenarios. The symbol ‘3’ indicates the REL
contains the corresponding feature.

68 EXPERIMENTS IN RIGHTS CONTROL

Usage Scenarios 3.5. NOVEL SCENARIOS

when the user agrees on the terms and conditions stated in offer
(see section 3.5.2). We can also clearly capture the behaviour of the
license evolutions when the license is copied, clipped or mixed, etc.

3. LicenseScript can model a wide variety of distinct terms in a multi-
set, which could be a license, an offer, a wallet, a policy, etc. This
offers a high flexibility in designing systems that are not confined to
rights management. For instance, we can model a flexible payment
system by using LicenseScript [Corin et al., 2003].

4. LicenseScript can provide a fine granularity of control over the con-
tent, as do XML-based RELs, as shown in Table 3.1 and Table 3.2.
The tables also show that that LicenseScript is more flexible and
expressive than XML-based RELs.

In subsequent sections, we use LicenseScript to describe the afore-
mentioned novel scenarios. Thereby, we show some of the advantages of
LicenseScript over XML-based RELs in addition to the listed conclusions.

3.5 Novel Scenarios

In this section, we use two novel scenarios to demonstrate the advantages
of LicenseScript over the XML-based RELs.

3.5.1 Project Document Sharing

Fred, his project teammate Greg, and his project leader Han use a docu-
ment sharing system for collaboration. Sometimes conflicts rise, for ex-
ample, when Fred and Han are working on the same document at the same
time. To reconcile these conflicts, they agree on a policy that Han’s ver-
sion always overwrites others’ versions. Ian (from outside of the institute)
has joined the project recently. Han has the privilege to grant him the
system access.

The license for document “State-of-the-Art.tex”, which is created by
Fred, can be written as follow:

EXPERIMENTS IN RIGHTS CONTROL 69

3.5. NOVEL SCENARIOS Usage Scenarios

license(tex:state-of-the-art.tex,
[(can_startread(B1,B2,User) :-

get_value(B1,members,Ms), member(User,Ms),
get_value(B1,systems,SYSs),
identify(D), member(D,SYSs), get_value(B1,isreading,Rs),
not(member(User,Rs)), append(User,Rs),
set_value(B1,isreading,Rs,B2), get_value(B1,history,H),
today(D), append([User,startread,D],H,H2),
set_value(B1,history,H2,B2)),

(can_endread(B1,B2,User) :-
get_value(B1,isreading,Rs), remove(Rs,User,NR),
set_value(B1,isreading,NR,B2),
get_value(B1,history,H), today(D),
append([User,endread,D],H,H2),
set_value(B1,history,H2,B2)),

(can_startwrite(B1,B2,User) :-
get_value(B1,members,Ms), member(User,Ms),
get_value(B1,systems,SYSs),
identify(D), member(D,SYSs),
get_value(B1,iswriting,Rs), length(RS)=0,
append(User,Rs), set_value(B1,iswriting,Rs,B2),
get_value(B1,history,H), today(D),
append([User,startwrite,D],H,H2),
set_value(B1,history,H2,B2)),

(can_startwrite(B1,B2,User) :-
get_value(B1,members,Ms), member(User,Ms),
get_value(B1,systems,SYSs),
identify(D), member(D,SYSs),
get_value(B1,iswriting,Rs), length(RS)>1,
get_value(B1,leader,L), User=L,
remove(X,iswriting,NL), append(User,NL,NL2),
set_value(B1,iswriting,NL2,B2)),

(can_endwrite(B1,B2,User) :-
get_value(B1,history,H), today(D),
append([User,endwrite,D],H,H2),
set_value(B1,history,H2,B2),
get_value(B1,iswriting,Rs), member(User,Rs)),

(cangrant(B1,B2,User1,User2,Sys) :-
get_value(B1,leader,L), User1=L,
get_value(B1,members,Ms), append(Ms,User2),
set_value(B1,members,Ms,B2),
get_value(B1,systems,SYSs), identify(D1),
member(D1,SYSs), not(member(Sys,SYSs)),
append(Sys,SYSs),
set_value(B1,systems,SYSs,B2))],

[(creator=fred), (leader=han), (members=[fred,han,greg]),
(systems=[univ_twente]), (isreading=[]),
(iswriting=[]), (history=[])])

The binding members is a list of members who have rights on this
document. The binding systems is a list of system environments that
are permitted for the members to access the document. This binding pre-
vents the document from being accessed from an untrusted environment.

70 EXPERIMENTS IN RIGHTS CONTROL

Usage Scenarios 3.5. NOVEL SCENARIOS

The license bindings isreading and iswriting are two sets that in-
dicate the users who are reading and writing the document currently, re-
spectively. In other words, they indicate the current status of the docu-
ment. The license binding history functions as audit trail that records
operations that have been performed by the users on the document.

There are 5 rules involved in this scenario, as can be seen as follows:

startread(Doc,User) : license(Doc,C,B1) -> license(Doc,C,B2)
<= C |- can_startread(B1,B2,User)

endread(Doc,User) : license(Doc,C,B1) -> license(Doc,C,B2)
<= C |- can_endread(B1,B2,User)

startwrite(Doc,User) : license(Doc,C,B1) -> license(Doc,C,B2)
<= C |- can_startwrite(B1,B2,User)

endwrite(Doc,User) : license(Doc,C,B1) -> license(Doc,C,B2)
<= C |- can_endwrite(B1,B2,User)

grant(Doc,User1,User2,System) : license(Doc,C,B1) -> license(Doc,C,B2)
<= C |- cangrant(B1,B2,User1,User2,System)

doc1

doc1

doc1

doc1

doc1

CVS

startread

endread

startread

endread

startwrite

doc1 startwrite

endwritedoc2

Rights Conflict

Not allowed to write

time

Figure 3.3: A timing diagram of rights (real-time) concurrent activities in the
document sharing system.

This scenario exhibits a concurrent content access pattern: More than
one subject may be performing the same operation on the same content
simultaneously. This evokes conflicts.

EXPERIMENTS IN RIGHTS CONTROL 71

3.5. NOVEL SCENARIOS Usage Scenarios

For instance, Fig. 3.3 shows that when Fred and Han attempt to write
at the same time, the project policy prevails, where it states that the project
leader possesses higher privilege, Han can overwrite the document. XrML
and ODRL do not provide mechanisms for concurrent access control, as
far as we know. Additionally, XrML and ODRL do not provide status
constraint to describe the real-time condition of the content.

3.5.2 Licenses Evolution Modelling
Jack is designing a new business which involves creating offers and li-
censes. He is interested in knowing how the distribution of the licenses
between numerous entities would influence the licenses evolution.

He would like to check if users are allowed to assert desirable rights,
e.g. a print right, at their systems, and he wants to know if conflicts, i.e.
the asserted right conflicted with the existing right stated in the license,
could arise that might undermine the business. For instance, a user asserts
a new view right which allows her to view the ebook indefinitely.

The offer Jack constructs is:

offer(ebook:a_fiction,
[(canview(B1,B2,User) :-

get_value(B1,user,User1), User=User1,
get_value(B1,viewed_times,PT),
get_value(B1,max_views,Max), PT<Max, get_value(B1,expires,Exp),
today(D), Exp>D),

(cancopy(B1,B2,User) :-
get_value(B1,user,User1), User=User1, get_value(B1,expires,Exp),
today(D), Exp>D),

(cangive(B1,B2,User1,User2) :-
get_value(B1,user,User), User1=User, set_value(B1,user,User2,B2),
set_value(B1,viewed_times,0,B2)),

(canagree(B1,B2,User) :-
today(D), Exp is D+366, set_value(B1,expires,Exp,B2),
set_value(B1,user,User,B2)),

(canassert(C1,C2,B1,B2,Clause,Binds,User) :-
get_value(B1,user,User1), User=User1, append(C1,Clause,C2),
append(B1,Binds,B2))],

[(viewed_times=0), (max_views=10),
(expires=20/12/2005), (user=anyone)])

The clause canassert of this offer determines if the user has the
privilege to add right (i.e. clause, the argument Clause and the bindings,
the argument Binds) to this license. The clause canagree transforms

72 EXPERIMENTS IN RIGHTS CONTROL

Usage Scenarios 3.5. NOVEL SCENARIOS

Timeline

canagree

o1 l1

o1

l1

o1

l2

cancopy

l3

l2

cangive

o1

l4

canassert

l2

o1

l4

l2

o1

state1 state2 state3 state4 state5 state6

cancopy

l5

Figure 3.4: A state chart of an example of license evolution in this scenario.

this offer to a license for the user, when the user agrees on the terms and
conditions stated in this offer.

Jack can use his license interpreter (simulator) to analyze the license
evolutions. The license interpreter records each state of the license evolu-
tions (i.e. each new license generated as a result of the evolution caused by
the rules), including the newly generated licenses and the original licenses.

Additionally, through multiset rewriting the license interpreter is able
to simulate the communications of more than two entities, for instance,
content providers and content users. The license interpreter is able to help
Jack tracing the logical design errors in his rights management system.
Jack constructs the corresponding rules for the analysis on the evolutions
of this license:

agree(Ebook,User) : offer(Ebook,C,B1) ->
offer(Ebook,C,B1), license(Ebook,C,B2)

<= C |- canagree(B1,B2,User)
view(Ebook,User) : license(Ebook,C,B1) ->

license(Ebook,C,B2)
<= C |- canview(B1,B2,User)

copy(Ebook,User) : license(Ebook,C,B1) ->
license(Ebook,C,B1),license(Ebook,C,B2)

<= C |- cancopy(B1,B2,User)
give(Ebook,User1,User2) : license(Ebook,C,B1) ->

license(Ebook,C,B2)
<= C |- cangive(B1,B2,User1,User2)

assert(Ebook,Clause,Binds,User) : license(Ebook,C1,B1) ->

EXPERIMENTS IN RIGHTS CONTROL 73

3.5. NOVEL SCENARIOS Usage Scenarios

license(Ebook,C2,B2)
<= C1 |- canassert(C1,C2,B1,B2,Clause,Binds,User)

The evolution of this offer may take the form of Fig. 3.4. The license
l4 generated (at state 5 for user awho asserts a print right on the license):

license(ebook:a_fiction,
[(canview(B1,B2,User) :-

get_value(B1,user,User1), User=User1,
get_value(B1,viewed_times,PT),
get_value(B1,max_views,Max), PT<Max, get_value(B1,expires,Exp),
today(D), Exp>D),

(cancopy(B1,B2,User) :-
get_value(B1,user,User1), User=User1, get_value(B1,expires,Exp),
today(D), Exp>D),

(cangive(B1,B2,User1,User2) :-
get_value(B1,user,User), User=User1, set_value(B1,user,User2,B2),
set_value(B1,viewed_times,0,B2)),

(canagree(B1,B2,User) :-
today(D), Exp is D+366, set_value(B1,expires,Exp,B2),
set_value(B1,user,User,B2)),

(canassert(C1,C2,B1,B2,Clause,Binds,User) :-
get_value(B1,user,User1), User=User1, append(C1,Clause,C2),
append(B1,Binds,B2)),

(canprint(B1,B2,User) :-
get_value(B1,user,User1), User=User1)],

[(viewed_times=0), (max_views=10), (expires=20/12/2006), (user=a)])

The license interpreter is able to generate all possible licenses and of-
fers. As can be seen at state 2, the copy right is performed on the old
license (l1) to generate a new license (l2) in addition to the original li-
cense (l1) at state 3.

The license interpreter can in principle be used as a licensing model
checker, and the LicenseScript language can be used as model language
to specify the licensing processes. In short, LicenseScript is a potential
modelling language for licensing processes.

Additionally, LicenseScript allows dynamic generation of new vocab-
ulary for the rights expression in the license clause, as shown in this sce-
nario. XrML and ODRL do not support this feature. However, this has to
be implemented with great care because this could be abusively exploited,
which undermines the rights management system. We may control the
rules with care, to render the rules trusted.

74 EXPERIMENTS IN RIGHTS CONTROL

Usage Scenarios 3.6. CONCLUSIONS AND FUTURE WORK

3.6 Conclusions and Future Work
We have presented an anatomy of right expression languages (RELs). In
addition, we have studied the scenarios presented in XrML and ODRL,
and we have translated them into LicenseScript (the REL we proposed in
[Chong et al., 2003a]). We have also studied novel scenarios and formal-
ized them in LicenseScript.

This investigation is useful for understanding the strengths and weak-
nesses of ODRL, XrML and LicenseScript, and for assessing their capa-
bility of describing a number of important content access and distribution
patterns as well as licensing processes. We have also demonstrated that
LicenseScript is sufficiently flexible and expressive to capture the scenar-
ios studied so far.

In LicenseScript one can define a new vocabulary for rights expression
in the license clause, which XML-based RELs cannot support (as shown
in scenario of license evolution modelling, section 3.5.2). We believe that
this feature of LicenseScript may support copyrights enforcement in the
rights management system. This deserves further study.

EXPERIMENTS IN RIGHTS CONTROL 75

CHAPTER 4

COPYRIGHT APPROXIMATION

Approximating Fair Use in LicenseScript3

Cheun Ngen Chong, Sandro Etalle, Pieter Hartel, and Yee Wei Law

Abstract Current rights management systems are not able to enforce
copyright laws because of both legal and technological reasons. The con-
tract rights granted by a copyright owner are often overridden by the
users’ statutory rights that are granted by the laws. In particular, fair use
allows for “unauthorized but not illegal” use of content. Two technological
reasons why fair use cannot be upheld: (1) the current XML-based rights
expression language (REL) cannot capture user’s statutory rights; and (2)
the underlying architectures cannot support copyright enforcement. This
paper focuses on the first problem and we propose a way of solving it by
a two-pronged approach: (1) rights assertion, to allow a user to assert new
rights to the license, i.e. freely express her rights under fair use; and (2)
audit logging, to record the asserted rights and keep track of the copies
rendered and distributed under fair use. We apply this approach in Li-

3This chapter has been published in 6th International Conference of Asian Digital
Libraries (ICADL’2003), volume 2911 of LNCS, 2003, pages 432–443, Springer-Verlag.

77

4.1. INTRODUCTION Copyright Approximation

censeScript (a logic-based REL) to demonstrate how LicenseScript can
approximate fair use.

4.1 Introduction

Current rights management systems are basically not able to enforce prop-
erly copyright laws. The reason is both legal and technological and lies
mainly in the fact that user’s rights are a result of the reconciliation of two
different and often conflicting rulings. On one hand there are the the rights
granted by contract by the copyright owner (e.g. author or digital library)
to a user; these are called contract rights because they are granted when
user agrees on the terms and conditions imposed by the copyright owner.
On the other hand, there exist statutory rights granted by the law.

An example of statutory right is the right of fair use [Mulligan, 2003].
Contract rights and statutory rights often contradict each other: a contract
may for instance forbid making copies of a given book, while the law
grants the user to make copies for educational use. Statutory rights de-
pend on a number of circumstances. For instance, according to the United
States Codes (U.S.C) (http://uscode.house.gov/), Section 107 Title
17 Chapter 1 (Fair Use Doctrine), “fair use of copyrighted content, in-
cluding reproduction for purposes such as criticism, comment, news re-
porting, teaching, scholarship, or research does not violate or infringe the
copyrights”.

In general, statutory rights are restricted by the contract rights in the
rights management systems. In other words, from the legal perspective,
the copyright owner holds far more control than the copyright laws en-
dorse [Samuelson, 2003]. Questions of the legality of overriding the statu-
tory rights by contract rights are yet to be answered [Guibault, 2002], how-
ever the legal perspective is beyond the scope of the paper.

To fully understand why it is impossible to render this situation in cur-
rent rights management systems we have to take a look at their structure;
which consists of: (1) a rights expression language (REL), and (2) an un-
derlying architecture. A REL provides a vocabulary, associated with a set
of grammatical rules, to express a fine-grained usage control over a con-

78 EXPERIMENTS IN RIGHTS CONTROL

Copyright Approximation 4.1. INTRODUCTION

tent. A license is written in a REL and governs the terms and conditions
under which the content should be used. In practice, the most widely-used
RELs are XML-based, for instance XrML [Guo, 2001] and ODRL [Ian-
nella, 2001].

Mulligan and Burstein [2002] have pointed out the inadequacies of the
aforementioned XML-based RELs in expressing a user’s statutory rights:
(1) the RELs can only describe contract rights; (2) the RELs provide in-
sufficient support for rights assertion by the user; and (3) the RELs cannot
provide contextual information consistent with the copyright laws that ac-
commodate the user’s statutory rights. In short, the user’s statutory rights
become “unauthorized” under the contract rights because they cannot be
captured in the license written in an XML-based REL. On the other hand,
the user’s statutory rights must be upheld under the copyright laws.

Fair use allows the users to exercise these “unauthorized but not ille-
gal” rights. In addition, it is neither a legal nor a practical requirement for
users to declare these rights explicitly before enjoying these rights. Last
but not least, the architecture cannot determine if some content is used for
non-profit or commercial purposes [Felten, 2003]. Although it is impos-
sible for a REL to capture the semantics of fair use completely we may
approximate fair use [Mulligan and Burstein, 2002].

In this paper, we propose a method for implementing a digital right
management system that takes into account statutory right. For this we re-
fer to the LicenseScript right expression model [Chong et al., 2003a], and
we use a two two-pronged approach based on (1) rights assertion; and
(2) audit logging (see Fig. 4.1). To the best of our knowledge, this is the
first attempt to approximate fair use by using a REL. We elaborate this ap-
proach in the later sections. In addition, we have pinpointed the distinction
of LicenseScript with the XML-based RELs in our earlier work [Chong
et al., 2003d].

This paper is organized as follows. Section 4.2 introduces our ap-
proach to approximating fair use. Section 4.3 briefly explains the Licens-
eScript language with a simple scenario. Section 4.4 details our approach
to approximating fair use in LicenseScript. Section 4.5 describes briefly
some related work. Finally, section 4.6 concludes this paper and presents
future work.

EXPERIMENTS IN RIGHTS CONTROL 79

4.2. OUR APPROACH Copyright Approximation

4.2 Our Approach
In this section, we explain how LicenseScript may be used to approximate
fair use. As mentioned in section 4.1, we are using a two-pronged ap-
proach (Fig. 4.1): (1) Rights assertion: to allow the user to assert new fair
use-compliant rights in addition to the rights dictated by the license; and
(2) Audit logging: to keep a record of the rights asserted and exercised by
the user and to keep track of the copies of the licenses created.

license

license

license

copy give

Rights Assertion

Audit Logging

license

Righs Issuance

Bob Alice

Alice

Alice

license

Charles

co
py

copy
copy

1 2

3

Figure 4.1: Our approach to approximating fair use.

Fig. 4.1 shows that Bob issues a license to Alice, allowing Alice to
make copies of the license (and therefore she is able to make copy of the
licensed content too). Alice perform rights assertion on the license before
making copies of the license. Alice in turn gives a copy of the license to
Charles. All the actions performed by the users (i.e. Alice and Charles)
are logged in the appropriate license.

Using this approach, on one hand the users can freely exercise their
statutory rights; on the other hand, the copyright owner can track the
source of possible copyright infringement. Note that our proposal is more
advanced than rights issuance, which is performed by the copyright owner
for issuing and granting rights to a user.

80 EXPERIMENTS IN RIGHTS CONTROL

Copyright Approximation 4.2. OUR APPROACH

We use the following illustrative scenario of a digital library to aid in
our explanation in the next two sections:

Example 21. Alice borrows an ebook, entitled “An Example Book” from
Bob’s Digital Library (herefrom we simply call it Bob). Bob sends the
license to Alice, allowing her to view, copy and give the rendered copies
of the ebook to other users.

In subsequent sections, we elaborate how the two-pronged approach
mentioned earlier can be used to approximate fair use.

4.2.1 Rights Assertion

Imagine a license for Alice, which states the following rights that are
granted to Alice by Bob: view, copy, give and assert. Suppose Alice wants
to print the ebook. The license does not state the print right. Therefore,
Alice must assert a new print right by adding this right to the license. We
believe that the users ability to assert new rights contributes to fair use be-
cause the user can express their rights according to their will, in addition
to the rights granted by the copyright owner.

We make a few what we believe to be reasonable assumptions. Al-
ice must have a content renderer, in this case an ebook viewer to use the
ebook. A set of rules are embedded in the firmware of this ebook viewer.
Bob may define these rules. Bob may not trust Alice, but he trusts the
rules he defines. If Alice’s asserted right in the license can be exercised
by any corresponding rule Bob defines, Bob may logically trust this right
(unless the asserted right causes conflicts in the license, which we will
discuss later). This is because Alice’s asserted rights must conform to the
semantics of the rules. The implicit assumption is that the content renderer
is secure.

Bob may specify some of the contextual information by using Licens-
eScript. These information may be, for instance, the usage purpose, the
location of use etc. that the Fair Use Doctrine refers to, as discussed in sec-
tion 4.1. Then, Bob can write the rules such that oblige Alice to provide
the contextual information. The rules then validate the provided infor-
mation using the contextual information stated in the doctrine. In other

EXPERIMENTS IN RIGHTS CONTROL 81

4.2. OUR APPROACH Copyright Approximation

words, Alice must declare her intention to perform fair use. The attesta-
tion of this declaration is performed by the underlying architecture (pre-
sumably by using some cryptographic means). We consider architectural
support to enforce all this as our future work. Here we are concerned
only with a higher level of abstraction that defines what may or may not
happen, and not how actions may be performed.

4.2.2 Audit Logging

Alice should not be able to assert arbitrary rights nor must she be able
to override existing rights (in the license) that may undermine the rights
management system. While we might be able to avoid some problems
by syntactic checks (e.g. to check for duplication of rights in the license
caused by the rights assertion), many other potential ambiguities will re-
main (e.g. if the rights asserted can expire). Therefore, we record all the
asserted rights (along with the user’s identity, the date the right is asserted
and the purpose of asserting the rights) in the license.

Bob may check the record and the license if the asserted rights have
overridden or violated the contract rights. Therefrom, Bob may take fur-
ther action, e.g. to allow/disallow the Alice’s asserted right or to take Alice
to court if the asserted rights violate the copyrights or the contract rights.

Additionally, Bob also tracks the copies of the licenses distributed by
Alice. We can put a history record in the license to log this distribution
pattern. Thus, Bob (i.e. the copyright owner) can trace the distribution
of the licenses by inspecting the history record in these licenses. This
helps the copyright owner track possible sources of copyrights infringe-
ment. Audit logging requires cryptographic support from the underlying
architecture. We have already addressed the issue of secure audit logging
in our previous work [Chong et al., 2003e].

This concludes the introduction to our two-pronged approach towards
approximating fair use. We will now present the details of the approach
using LicenseScript.

82 EXPERIMENTS IN RIGHTS CONTROL

Copyright Approximation 4.3. LICENSESCRIPT LANGUAGE

4.3 LicenseScript Language
LicenseScript [Chong et al., 2003a] is a language that is based on (1) mul-
tiset rewriting, which captures the dynamic evolution of licenses; and (2)
logic programming, which captures the static terms and conditions on a li-
cense. LicenseScript provides a judicious choice of the interfacing mech-
anism between the static and dynamic domains.

Multiset

Rules

Content

Bindings

Old License

Clauses

Content

Bindings

New License

Clauses

Operation

1

2

3

Query
4

5

Figure 4.2: Transformation of licenses.

A license specifies when certain operations on the object are permitted
or denied. The license is associated with the content, as can be seen in
Fig. 4.2. A license carries bindings, which describe the attributes of the
license; and clauses, which determine if a certain operation is allowed
(or forbidden). The license clauses consult the license bindings for their
decision making and may also alter the values of the license bindings.

Licenses are represented as terms that reside in multisets. A multiset
can be thought as part of the user’s system. For the specification of a
license, we use logic programming. The readers are thus assumed to be
familiar with the terminology and the basic results of the semantics of
logic programs.

EXPERIMENTS IN RIGHTS CONTROL 83

4.3. LICENSESCRIPT LANGUAGE Copyright Approximation

Fig. 4.2 illustrates that 1© an operation (performed by a subject) 2©
invokes a rule in the multiset. The rule then generates and executes a 3©
query on the 4© license clauses and bindings. The 5© execution result of
the rule is a newly generated license. Now we use a simple illustrative
scenario to explain this process:

Example 22. Amanda gets an ebook, titled “A Book” from Ben Publisher.
Ben issues a license with an expiry date fixed at “23/06/2004”.

This license allows Amanda to print two copies of the ebook (L01,
..., L14 are line numbers included for reference purposes, they are not
part of the code):

license(ebook:a_book, L01
[(canprint(B1,B2,User) :- L02

get_value(B1,consumer,C), L03
C = User, L04
get_value(B1,expires,Exp), L05
today(D), D>Exp, L06
get_value(B1,printed,P), L07
get_value(B1,max_prints,Max), L08
P < Max, L09
set_value(B1,printed,P+1,B2)], L10

[(company=ben_publisher), L11
(consumer=amanda), L12
(expires=23/06/2004), L13
(max_prints=2), (printed=0)]) L14

A license is represented by a term of the form license(content,
C, B), where content is a unique identifier referring to the real con-
tent; C is a list of license clauses consisting of Prolog programs describing
when operations are permitted or denied; and B is a list of license bind-
ings capturing the attributes of the license. We define two multiset-rewrite
rules, as shown below, to model the interface between the system and
the licenses. The rules can be thought of as a firmware in the user’s sys-
tem. The user’s content renderer would contain the rules as embedded
firmware. Only the copyright owner (or a trusted third party on behalf
of the copyright owner) can define a set of rules for the firmware of the
content renderer.

The syntax of the rules is based on the Gamma notation [Banâtre et al.,
2001] of multiset rewriting (again, R01,...,R04 are line numbers):

84 EXPERIMENTS IN RIGHTS CONTROL

Copyright Approximation 4.3. LICENSESCRIPT LANGUAGE

print(Ebook,User) : R01
license(Ebook,C,B1) -> R02
license(Ebook,C,B2) R03

<= C |- canprint(B1,B2,User) R04

We will step through the example assuming Amanda would like to
print the eBook with the available license on her system (as shown above):

1. Amanda’s system wants to know whether she has the print right
on the ebook. This is achieved by applying the print rule (line R01)
with appropriate parameters: print(ebook:a book,amanda).

2. The rule finds the license(ebook:a book,[...],[...])
(line R02, line L01) in the system. The first list refers to the license
clauses (lines L02–L10), while the second list refers to the set of
license bindings (lines L11–L14).

3. The rule then executes a query in the form of canprint(B1,
B2, User) (line R04), where B2 designates the output generated
by the query; This will form a new set of license bindings.

4. The license interpreter retrieves the value of the license binding
consumer from the list of license bindings B1 (line L03) and
compares the retrieved value with the user identity User (line L04).
User is passed in as an argument to the license clause (line L02).

5. Similarly, the interpreter retrieves the value of the bindingexpires
(line L05).

6. The interpreter calls the primitive (which is discussed later) today
(D) (line L06) to obtain the current time and date.

7. The expiry date of the license must be greater than current time and
date (line L06).

8. Similarly, the value of printed is checked if it is smaller than the
value of max prints (lines L07–L09).

EXPERIMENTS IN RIGHTS CONTROL 85

4.4. FAIR USE IN LICENSESCRIPT Copyright Approximation

9. If all conditions are satisfied (the user is valid, the license has not
expired and the number of printed copies does not exceed the al-
lowable maximum copies), the query returns yes (line R04) to the
interpreter, with the newly generated license bindings in B2.

10. The value of the license binding printed is incremented (line
L10) every time the print operation succeeds.

11. The value yes indicates that the execution of canprint(B1,
B2, User) yields success in the license clauses C.

12. The rule print(Ebook,User) generates a new license with the
newly generated license bindings license(Ebook,C,B2) (line
R03).

The function get value(B,n,V) is to report in V the value of n
from B, whereas the function set value(B1,n,V,B2), to give value
V to n in B2.

We also use a number of primitives to model the interface of the sys-
tem with the license (interpreter): (1) today(D), to bind D to the current
system date/time; and (2) identify(L), to identify the current envi-
ronment to L. For further details of the LicenseScript language, see Ref-
erence [Chong et al., 2003a].

In the following section, we explain how LicenseScript can be used to
approximate fair use.

4.4 Fair Use in LicenseScript
As we have seen, licenses are just objects in the multiset. Many other
types of objects can be modelled, such as wallets and policies.

We use this LicenseScript-specific feature to define (1) the license is-
sued by Bob to Alice, which allows her to view, copy and give the ebook,
as well as assert new rights (section 4.4.1); (2) the doctrine that carries
the contextual information consistent with fair use (section 4.4.3); (3) the
record that logs Alice’s asserted rights (section 4.4.2); and (4) the rules
defined by Bob as the firmware of Alice’s system, which include view,
copy, give, print and assert (section 4.4.4).

86 EXPERIMENTS IN RIGHTS CONTROL

Copyright Approximation 4.4. FAIR USE IN LICENSESCRIPT

4.4.1 The license
Following Example 21, this is the license that Bob issues to Alice:

license(ebook:an_example_book,
[(canloan(B1,B2,Loaner,User) :-

get_value(B1,digital_library,L), L=Loaner,
get_value(B1,loaned,Loaned), Loaned=false,
set_value(B1,loaned,true,B2),
set_value(B1,user,User), today(D),
set_value(B1,expires,D+7,B2)),

(canreturn(B1,B2) :-
set_value(B1,loaned,false,B2)),

(canview(B1,B2,User) :-
get_value(B1,user,U), U=User,
get_value(B1,expires,Exp), today(D), D>Exp),

(cancopy(B1,B2,B3,User) :-
get_value(B1,user,U), U=User,
get_value(B1,expires,Exp),
today(D), D>Exp, get_value(B1,copies,N),
append([(User,D),N,NN), set_value(B1,copies,NN,B2),
set_value(B1,copies,NN,B3)),

(cangive(B1,B2,User1,User2) :-
get_value(B1,user,U), U=User1,
set_value(B1,user,User2,B2), get_value(B1,trace,T),
today(D), append([(User1,D,User2)],T,T2),
set_value(B1,trace,T2,B2)),

(canassert(C1,C2,B1,B2,Clause,Binds,User,Purpose) :-
get_value(B1,user,U), U=User,
get_value(B1,expires,Exp), today(D), D>Exp,
get_value(B1,asserted,As),
append([(User,D,Purpose)],Clause,NC),
append(NC,As,As2), set_value(B1,asserted,As2,B2),
append(C1,Clause,C2), append(B1,Binds,B2)),

(canperform(B1,B2,User) :-
get_value(B1,expires,Exp), today(D), D>Exp,
get_value(B1,user,U), U=User)],

[(user=alice), (digital_library=bob), (loaned=true),
(asserted=[]), (trace=[]),
(copies=[]), (expires=15/8/03)])

The function append(L1,L2,L3) is a built-in Prolog program that
produces a new list (L3) by combining two lists (L1 and L2).

The license clause canloan determines if the ebook can be loaned
to the user, and only by the digital library. The return date (represented
by expires) is set at the seventh day from the date this ebook is loaned.
The license clause canreturn is the counterpart of the license clause
canloan, which resets the binding loaned to false.

The license clause canview determines that only Alice (the user)
can view the ebook and the return date expires has not expired. The

EXPERIMENTS IN RIGHTS CONTROL 87

4.4. FAIR USE IN LICENSESCRIPT Copyright Approximation

license clause canassert allows Alice to assert new rights (represented
as the Clause with necessary bindings Binds). The license clause
canperform determines if the user who performs fair use is the gen-
uine user who owns the license.

The license binding asserted records all the rights asserted by the
user. The license binding trace records the distribution of the license
when it is given away. The license binding copies records the user who
generates a new copy of this license.

4.4.2 The record
The record that belongs to Bob and which logs the rigths asserted by
Alice to a license looks like this:

record(ebook:an_example_book,
[(canlog(B1,B2,User,Action) :-

get_value(B1,history,H), today(Date),
append([(User,Action,Date)],H,NH),
set_value(B1,history,NH,B2))],

[(history=[]), (digital_library=bob)])

The term record records (clause canlog) all the actions (the argu-
ment Action) performed by the user (the argument User) at the current
time (the value Date) on the ebook.

4.4.3 The doctrine
The doctrine (defined by Bob) that encodes the contextual information
of fair use is:

doctrine(fairuse,
[(canallow(B1,B2,Purpose) :-

get_value(B1,purposes,Ps), member(Purpose,Ps),
identify(Loc), get_value(B1,location,L), L=Loc)],

[(purposes=[criticism,comment,newsreport,
eduction,scholarship,research]),

(location=united_states_of_america)])

The function member(E,L) checks if the element E belongs to the
list L. The license clause canallow determines if the purpose attested by
the user for using the content is under the fair use context and if the user

88 EXPERIMENTS IN RIGHTS CONTROL

Copyright Approximation 4.4. FAIR USE IN LICENSESCRIPT

is in the U.S. The license binding purposes state all the usage purposes
allowed under the fair use doctrine. The license binding location indi-
cates that this doctrine applies in United States. The copyright owner can
define different types of doctrine, e.g. first sale doctrine to encap-
sulate the corresponding contextual information.

4.4.4 The rules
The rules that Bob defines for Alice’s firmware are:

loan(Ebook,User) :
license(Ebook,C,B1) -> license(Ebook,C,B2)

<= C |- canloan(B1,B2,User)
return(Ebook) :

license(Ebook,C,B1) -> license(Ebook,C,B2)
<= C |- canreturn(B1,B2)

view(Ebook,User,Purpose) :
license(Ebook,C,B1) -> license(Ebook,C,B2)

<= C |- canview(B1,B2,User)
view(Ebook,User,Purpose) :

doctrine(fairuse,Cp,Bp1),license(Ebook,C,B1) ->
doctrine(fairuse,Cp,Bp2),license(Ebook,C,B2)

<= C |- canperform(B1,B2,User),
Cp |- canallow(Bp1,Bp2,Purpose)

copy(Ebook,User) :
license(Ebook,C,B1) ->
license(Ebook,C,B2),license(Ebook,C,B3)

<= C |- cancopy(B1,B2,B3,User)
copy(Ebook,User,Purpose) :

doctrine(fairuse,Cp,Bp1),license(Ebook,C,B1) ->
doctrine(fairuse,Cp,Bp2),license(Ebook,C,B1),
license(Ebook,C,B2)

<= C |- canperform(B1,B2,User),
Cp |- canallow(Bp1,Bp2,Purpose)

give(Ebook,User,Purpose) :
license(Ebook,C,B1) -> license(Ebook,C,B2)

<= C |- cangive(B1,B2,User1,User2)
give(Ebook,User,Purpose) :

doctrine(fairuse,Cp,Bp1),license(Ebook,C,B1) ->
doctrine(fairuse,Cp,Bp2),license(Ebook,C,B2)

<= C |- canperform(B1,B2,User),
Cp |- canallow(Bp1,Bp2,Purpose)

print(Ebook,User,Purpose) :
license(Ebook,C,B1) -> license(Ebook,C,B2)

<= C |- canprint(B1,B2,User)
print(Ebook,User,Purpose) :

doctrine(fairuse,Cp,Bp1),license(Ebook,C,B1) ->
doctrine(fairuse,Cp,Bp2),license(Ebook,C,B2)

<= C |- canperform(B1,B2,User),
Cp |- canallow(Bp1,Bp2,Purpose)

EXPERIMENTS IN RIGHTS CONTROL 89

4.4. FAIR USE IN LICENSESCRIPT Copyright Approximation

assert(Ebook,Clause,Binds,User,Purpose) :
license(Ebook,C1,B1),record(Ebook,Cr,Br1) ->
license(Ebook,C2,B2),record(Ebook,Cr,Br2)

<= C1 |- canassert(C1,C2,B1,B2,Clause,Binds,User,Purpose)
Cr |- canlog(Br1,Br2,User,Clause)

The assert rule says: to assert a new Clause with corresponding
Binds, the user must show her identity User and states the Purpose of
asserting this right; and the user’s asserted clause is recorded by the term
record (see section 4.4.2).

The first view rule says: to view the Ebook, the user must present
her identity User and declare to the usage Purpose; the license must
contain the license clause canview. If the first rule does not apply to
Alice’s execution, the second rule may be executed: the usage Purpose
attested by the User must conform to the contextual information stated
in the doctrine (see section 4.4.3).

The rules show how the various objects in the multiset are used, in a
cooperative fashion to achieve fair use. For example, as shown in Fig-
ure 4.1, 1© Alice has asserted a print right to the license (as shown in sec-
tion 4.4.1) on “1/8/2003” for the purpose of education (by executing
the assert rule). The new license is as follows:

license(ebook:an_example_book,
[...,
(canprint(B1,B2,User) :-

get_value(B1,onlyalice,U), U=User)],
[...,
(asserted=[

(alice,1/8/2003,education),
(canprint(B1,B2,User):-

get_value(B1,onlyalice,U),U=User)]),
(onlyalice=alice)])

(Herefrom, the symbol “. . . ” represents the unchanged part of the object.)
The asserted clause canprint allows only Alice to print the ebook

(she adds a new binding, namely onlyalice to the license). Alice can
execute the print rule to print the ebook with the asserted print right.
The asserted right is logged at the license binding asserted and Bob’s
record (from section 4.4.2) becomes:

record(ebook:an_example_book,
[...,],
[...,

90 EXPERIMENTS IN RIGHTS CONTROL

Copyright Approximation 4.5. RELATED WORK

(history=[(alice,
(canprint(B1,B2,User):-

get_value(B1,user,U),U=User),
1/8/03)])])

Now, 2© Alice makes an additional copy of the license by executing
the copy rule. The third version of the license becomes:
license(ebook:an_example_book,
[...,
(canprint(B1,B2,User) :-

get_value(B1,onlyalice,U), U=User)],
[...,
(asserted=[(alice,1/8/2003,education),

(canprint(B1,B2,User):-
get_value(B1,onlyalice,U),U=User))]),

(onlyalice=alice), (copies=[(alice,1/8/2003)])])

Alice’s copy action is logged in the binding copies. 3© Alice gives
a copy of the license to Charles on “2/8/03” (by executing the give
rule). Charles’ license (given by Alice) will look like this:
license(ebook:an_example_book,
[...,
(canprint(B1,B2,User) :-

get_value(B1,onlyalice,U), U=User)],
[...,
(asserted=[(alice,1/8/2003,education),

(canprint(B1,B2,User):-
get_value(B1,onlyalice,U),U=User))]),

(onlyalice=alice),
(copies=[(alice,1/8/2003)]),

(trace=[(alice,2/8/03,charles)]), (user=charles)])

The distribution is logged in the license binding trace. The value of
the binding user is assigned to charles indicating the transfer of the
ownership of this license.

We have demonstrated how rules can transform the objects in the mul-
tiset by using the example as illustrated in Figure 4.1. This concludes the
detailed description of the approach to approximating fair use in Licens-
eScript.

4.5 Related Work
Mulligan and Burstein [2002] suggest several extensions of the XML-
based RELs to approximate fair use. We summarize their suggestions

EXPERIMENTS IN RIGHTS CONTROL 91

4.5. RELATED WORK Copyright Approximation

as follows: (1) to define a set of rights that might simulate some “default”
rights the users have with physical copies of the content, e.g. for a music
album, the default rights may be play, rewind, seek, excerpt and copy; (2)
to provide some contextual information description in the REL to support
the fair use modelling, e.g. the usage purpose etc.

Similar to Mulligan and Burstein first suggestion, our approach con-
strains the content user’s fair use rights by the firmware rules. However,
the copyright owners (or content providers) cannot make the predictions
on how the users would use the content. Therefore, it is a cumbersome
process for the copyright owners to define a set of default rights for all
available content. Our approach, on the other hand, allows user to freely
express their rights. At the same time, the copyright owner may control the
user’s fair use actions to the extent confined by the rules. The copyright
owner may flexibly define some contextual information in LicenseScript
that consistent with the fair use that the rules may comply with.

Secure Telecooperation SIT, Darmstadt and the Fraunhofer Institute
for Integrated Circuits, Erlangen, Ilmenau have developed the Light Weight
Digital Rights Management System (LWDRM) (http://www.lwdrm.com/).
They introduce two distinct file formats, namely local media format (LMF)
and signed media format (SMF). The LMF is bound to the machine where
the content is generated, whereas the SMF is intended for small-scale dis-
tribution. The SMF is generated when the user mark the content with her
personal digital signature.

There are three levels of functionality defined in the LWDRM. The
first level is the LWDRM player, to play the SMF/LMF content. The sec-
ond level allows the user to generate LMF from the content. This level
offers more extensive features to the user, e.g. improved compression al-
gorithms etc. The third level allows the user to sign the LMF content,
i.e. to generate the SMF content. Thereby, the user could distribute and
use this SMF content in other machines. LWDRM may track the leak the
copyright infringement by using the signature. However, the user must
willingly sacrifice her privacy to perform fair use. Our approach is com-
plementary to the SIT approach, in that we manipulate licenses while SIT
manipulates content.

92 EXPERIMENTS IN RIGHTS CONTROL

Copyright Approximation 4.6. CONCLUSION AND FUTURE WORK

4.6 Conclusion and Future Work
Current rights management system can only enforce contract rights that
are granted by the copyright owners to the users. Other rights, such as the
statutory rights granted by copyright laws cannot be enforced in the rights
management systems. Fair use is an example of statutory rights, because
fair use allows “unauthorized but not illegal” actions.

In this paper, we focus on one aspect of the technological issues related
to the rights expression language (REL). We argue that current RELs (1)
cannot capture user’s statutory rights, (2) do not support rights assertion
performed by the users, and (3) cannot provide useful contextual informa-
tion that is consistent with the fair use. We have introduced a two-pronged
approach for approximating fair use in LicenseScript: rights assertion and
audit logging. Then, we have demonstrated the use of LicenseScript to ap-
proximate fair use.

We would also like to investigate if LicenseScript is capable of ex-
pressing other copyright laws, e.g. first-sale doctrine as well as privacy
protection in the future. In addition, we are implementing our architecture
for LicenseScript, namely the LicenseScript Engine.

EXPERIMENTS IN RIGHTS CONTROL 93

Part III
RIGHTS ENFORCEMENT
MECHANISMS

So far, we have explained the rights expression language (REL) in
general and introduced our experimental REL, LicenseScript. We have
shown that LicenseScript is flexible, expressive and practical. In this part
of the thesis, we will explore rights enforcement mechanisms that support
LicenseScript, i.e., the mechanisms explored are capable of enforcing the
rights specified by the LicenseScript license.

To enforce rights on digital content, we need to protect the content. As
Lampson [1974] defines,

Protection, is a general term for all the mechanisms that con-
trol the access of a program to other things in the system.

Many content protection mechanisms have been proposed. Some of
them have been adopted as standard and deployed in our daily lives. A
common example is the digital versatile disc (DVD) Content Scrambling
System (CSS) [Eskicioglu and Delp, 2001]. CSS is an encryption and
authentication scheme intended to prevent a DVD from being digitally
copied. Additionally, the DVD can be playable according to the geograph-
ical region, i.e. to enforce region control.

Another example is PayTV, which employs a conditional access (CA)
mechanism [Jain et al., 2002; Goldschlag and Kravitz, 1999]. In a CA sys-
tem, the set top box in the user’s home is capable of decrypting broadcast
content for as long as the user remains a (paying) subscriber.

The main objective of content protection mechanisms is to prevent
the digital content from being copied and distributed illegally. The basic
mechanism is simple. It encrypts the content and make sure that only au-
thorized users have the key. To implement this idea correctly is difficult,
if not impossible. This is because some of the necessary equipment is en-
tirely under control of the user, who is free to tamper with the equipment.

95

It is impossible to build an absolute tamper-proof system for content pro-
tection, since this must be able to withstand arbitrary, and unknown future
attacks.

In response to the extreme difficulties of building an absolute tamper-
proof system, the practical approach of implementing a tamper-resistant
system has emerged as a practical substitute. A tamper-resistant system
makes it difficult for an attacker to tamper with the protected content.

Several tamper-resistance mechanisms have been proposed. To make
the thesis self-contained, we will discuss some available mechanisms in
the following section.

Tamper-Resistance Mechanisms

Tamper-resistance mechanisms can be categorized into two types: soft-
ware tamper-resistance (STR) and hardware tamper-resistance (HTR).
We provide a brief survey here.

STR attempts to prevent or detect the content renderer from being
compromised. Thereby, the attacker cannot steal or tamper with the li-
cense and content when they are being used. In addition, STR also uses
techniques such as watermarking and fingerprinting to recognize specific
content, when it appears in an unauthorized context. STR also tries to
make it difficult to reverse engineer protected software so that embedded
keys cannot be extracted easily.

Several methods to achieve a measure of STR have been proposed,
such as code obfuscation [Collberg et al., 1998], code encryption [Auc-
smith, 1996] and self-checking code [Horne et al., 2001a].

In addition to STR, there is work on HTR. For instance, execute-only
memory (XOM) [Lie et al., 2000], trusted-computing platform(TCP) [Pear-
son et al., 2003], and typical hardware tokens (e.g. smart card, Java card,
iButton, etc.). They strive to protect sensitive information, e.g. user’s pri-
vate key or software code by storing sensitive data in inaccessible parts of
the hardware.

Tamper-resistance mechanisms strive to achieve the objectives dis-
cussed in the next section.

96 EXPERIMENTS IN RIGHTS CONTROL

Tamper-Resistance Objectives
Ravi et al. [2004] have decomposed the objectives of tamper-resistance
into more specific objectives, as shown in Figure 4.3:

Attack
Prevention

Attack
Proof

Time

Attack
Recovery

Attack
Detection

ATTACK

Attack
Avoidance

Figure 4.3: Objectives of tamper-resistant design approaches.

1. Attack prevention makes it difficult to launch attacks on a system.
For instance, physical protection of the hardware using a stainless
steel casing.

2. Attack avoidance [Kruegel, 2004] makes it difficult for an attacker
to launch any further attacks even if she is able to access a system
resource. The resource is modified in a way that makes it unusable
for the attacker. For instance, the communication message between
a content provider and a user is encrypted and signed.

3. Attack detection detects the attack after the attack is launched. For
instance, an intrusion detection system. The elapsed time between
the launch of the attack and the detection is critical to decide the
severity of the attack. Therefore, the time delay needs to be kept
as short as possible. For instance, if watermarked content is dis-
tributed illegally, the sooner the leak of illegal distribution is traced,
the better the loss can be prevented.

4. Attack recovery returns the system to a secure state to counter the
attack once it has been detected. For example, locking up or re-

EXPERIMENTS IN RIGHTS CONTROL 97

booting the system so that the attack cannot further compromise the
system. This will cause inconvenience to the users.

5. Attack proof preserves persistent records of the attack for later in-
spection and improvement on the system. The records can also be
used for forensic purposes. Audit logging is an example of provid-
ing the attack proof (see also chapter 7).

These tamper-resistance objectives are actually closely related to each
other. For instance, the unauthorized removal of an audit log (attack proof)
must be detected by the system (attack detection); and the digital water-
mark embedded in an audio (attack detection) should not be removable
(attack prevention).

In our work, we address some of the aforementioned attack models by
a series of experiments: In chapter 5 [Chong et al., 2002], we model attack
prevention and detection by using SPIN model, in which the thieves can-
not super-distribute illegally the digital content. In chapter 7 [Chong et al.,
2003e], we use secure audit logging to detect if the users have cheated
in using the digital content, i.e., to achieve attack detection and proof.
In chapter 8 [Chong et al., 2004], we propose a protocol working with
a tamper-resistant token to protect license and metadata, which accom-
plishes attack prevention and detection. In chapter 9 [Cheng et al., 2004],
we use tamper-resistant tokens to make it difficult for attackers stealing
the digital content, i.e., to achieve attack avoidance. However, We have
not deployed STR; we rely on HTR tokens. The next section summarizes
this approach.

Rights Enforcement Architecture
Figure 4.4 presents the architecture for our LicenseScript implementation.

This architecture is actually refined from the digital rights management
architecture proposed by Rosenblatt et al. [2002]. We separate the DRM
controller into two components, i.e., License Interpreter and Reference
Monitor:

• License Interpreter [Chong et al., 2005] interprets and maintains Li-
censeScript licenses. The License Interpreter supports the reference

98 EXPERIMENTS IN RIGHTS CONTROL

License
Interpreter

Cryptographic
Engine

Content
Renderer

Secures Decrypts

Reference
MonitorSupports Controls

Figure 4.4: The architecture for LicenseScript.

monitor in making decisions. We describe implementation of the
LicenseScript interpreter in chapter 6.

• Cryptographic Engine performs necessary cryptographic operations
for the License Interpreter and Content Renderer. For instance, to
identify, authenticate and authorize a user, to decrypt the license and
content if they are encrypted, and to encrypt audit logs that record
the user’s actions on the content. We implement identification, au-
thentication and authorization (IAA) on chapter 5 and cryptographic
support on a hardware token in chapter 7, chapter 8 and chapter 9.

• Content Renderer is a customized general-purpose or special pur-
pose application capable of rendering the content. We have cus-
tomized Adobe Acrobat by building a plug-in in chapter 5. We have
also created a customized audio player to play an encrypted audio
in chapter 9.

• Reference Monitor coordinates the actions of the License Interpreter
and the Content Renderer. For instance, if a user does not have
a right to print a document, the print functionality of the content
renderer is disabled. We further explain the concept of Reference
Monitor in chapter 8.

All components of the architecture must contribute to the security of
the system. For example, if the License Interpreter decides that no ac-

EXPERIMENTS IN RIGHTS CONTROL 99

cess should be granted, while the connection to the reference monitor is
severed, then the Content Renderer cannot be stopped. Judicious use of
tamper-resistant hardware is the only option to build an appropriately se-
cure system.

100 EXPERIMENTS IN RIGHTS CONTROL

CHAPTER 5

IDENTITY–ATTRIBUTE–RIGHTS

Security Attribute Based Digital Rights Management4

Cheun Ngen Chong, René van Buuren, Pieter H. Hartel, and Geert
Kleinhuis

Abstract Most real-life systems delegate responsibilities to different au-
thorities. We apply this idea of delegation to a digital rights management
system, to achieve high flexibility without jeopardizing the security. In
our model, a hierarchy of authorities issues certificates that are linked by
cryptographic means. This linkage establishes a chain of control, identity-
attribute-rights, and allows flexible rights control over content. Typical
security objectives, such as identification, authentication, authorization
and access control can be realized. Content keys are personalized to de-
tect illegal super distribution. We describe a working prototype, which
we develop using standard techniques. We present experimental results to
evaluate the scalability of the system. A formal analysis demonstrates that

4This chapter has been published in the Joint Int. Workshop on Interactive Distributed
Multimedia Systems/Protocols for Multimedia Systems (IDMS/PROMS), volume 2515
of LNCS, 2002, pages 339–352. Springer-Verlag.

101

5.1. INTRODUCTION Identity–Attribute–Rights

our design is able to detect a form of illegal super distribution.

5.1 Introduction

Annual losses to the film and music industry due to illegal distribution
of content on the Internet amount to billions of dollars annually [Har-
tung and Ramme, 2000]. Digital Rights Management (DRM) provides a
potential solution to the problem of illegal content distribution on the In-
ternet. DRM systems manage copyrights on digital content in untrusted
cyberspace.

Commercial DRM platforms for selling digital contents on the Inter-
net are available from SealedMedia, InterTrust and Microsoft etc. Some
music and movie industries have adopted online business models for in-
stance subscription-based music sales and pay-per-view movies, such as
Sony Music Entertainment and Universal Music Group. Some companies
have identified the opportunity to protect intellectual property within en-
terprise or organization instead of business-to-consumer model, such as
Authentica and Alchemedia. These systems are proprietary or include key
components that are proprietary. We propose an open system, and analyse
how effective it is to provide management flexibility.

Our system has components for identification, authentication and au-
thorization to achieve a standard level of access control. However, this
provides only limited flexibility, for example the in terms of the variety
of permissions offered. More flexibility is needed because we cannot
foresee which types of permissions and rights will be needed in future.
For example, in a standard access control system when a new permission
type is added to the system, the associations of all subjects and objects
with their permissions must be revisited. This creates management prob-
lems. Therefore, we introduce a second level of management and control,
which has a dual purpose: (1) the second level refines the first level con-
trol by specializing it, and (2) the second level provides facilities for the
secure distribution of content. We could sloganize our contribution by:
SABDRM = AccessControl + DRM .

Section 5.2 introduces our design of a DRM system and elaborates
on the aforementioned flexibility of management with a real-life example.

102 EXPERIMENTS IN RIGHTS CONTROL

Identity–Attribute–Rights 5.2. THE IDEA

Section 5.3 discusses the state of the art and related work. Section 5.4
describes our prototype system, a performance evaluation of the imple-
mentation, and a SPIN model of the system. Finally section 5.5 concludes
the paper and briefly explains future work.

5.2 The Idea

We consider a client-server setting in which a user downloads content,
where her rights on the content are carefully controlled, say by the content
providers or by DRM service providers. We assume that each user has a
unique identity. A standard public key certificate [Feghhi and Williams,
1998] can then be used to bind the identity to a public key. The pub-
lic key certificates are issued and distributed by a Certificate Authority
(CA) [Henry, 1999]. We assume that the server can establish the validity
of the public key certificate, so that the server can identify and authenti-
cate the user. Additionally by using the server public key certificate, the
user is able to authenticate the server.

For maximum flexibility, we assume that different security attributes
can be associated with each identity. Security attributes are information,
other than cryptographic keys, that is needed to establish and describe the
security properties of a user in the system. These security attributes may
include role, group membership, time of day, location to access resources,
password etc. A security attribute is encapsulated in an attribute certifi-
cate [Farrell and Housley, 2001; Gelbord et al., 2002]. The latter has a
similar structure to the public key certificate but the attribute certificate
does not carry a public key. The Attribute Authority (AA) [Linn, 1999],
is responsible for issuing, assigning, signing, distributing and revoking at-
tribute certificates. Note that the CA and AA could be the same authority,
but for maximum flexibility, the CA and AA would be different parties.
An attribute certificate is signed with the AA’s private key to ensure the
integrity of the attribute certificate. Having established the identity of a
user, and her security attributes we are now able to decide: (a) What con-
tent is accessible to the user, and (b) What rights the user may exercise on
that content.

The separation of deciding what content is accessible from what can

EXPERIMENTS IN RIGHTS CONTROL 103

5.2. THE IDEA Identity–Attribute–Rights

be done with the accessible content is a key aspect in our system; it cre-
ates flexibility, and at the same time simplifies the implementation. For
example, consider a document that contains both aggregate and detailed
business data. Users with appropriate security attributes may obtain the
detailed data, whereas others may only obtain the aggregate data. Estab-
lishing the particular rights (i.e. the ability to view, print, save, edit etc)
for any of these users holding their respective attributes is still a separate,
orthogonal issue.

We use a digital license to capture the rights of a user on a particular
item of content. The digital license carries information about the content,
the license holder, the payment status (if payment is involved), as well as
other terms and conditions of using the content. The digital licenses are
described by using XrML [Guo, 2001]. XrML provides a detailed syntax
for encapsulating fine-grained control information on a digital content.
The Clearing House (CH) is responsible for issuing, managing payment,
and distributing and revoking digital licenses. Again, the CH could be
the same as one of the CA or AA but would be different from either for
maximum flexibility.

The licensing mechanism we have sketched above is not vastly differ-
ent from other DRM mechanism. However, there are two innovations:

1. Identity, attribute and rights are decoupled to allow for maximum
flexibility.

2. Digital licenses are generated on demand at a time after the identity
and the security attributes have been verified. This is the earliest
moment when the system is able to decide which (partial!) content
must be delivered, and what the associated rights should be.

5.2.1 Certificates and License

The difference between the public key certificate and attribute certificate
and why we use a digital license can be shown from an illustration in real
life here: A Malaysian resident wishes to enter The Netherlands. She
would like to stay in the country for more than a year. Therefore, she
needs (1) a passport, (2) a visa and (3) a residence permit.

104 EXPERIMENTS IN RIGHTS CONTROL

Identity–Attribute–Rights 5.2. THE IDEA

• The Malaysian Immigration Department issues the passport. The
Malaysian government has a policy to decide which of its citizens
can be issued passports. This step effectively establishes the identity
of a party in the system, and is a prerequisite for access control.

• The Netherlands Embassy grants the visa. The visa is a proof of
permission for the passport holder to enter the country. An Embassy
also works to policy to decide whom to grant a visa. This step is akin
to the first level access control we mentioned in the introduction.

• The Alien Police Department in The Netherlands distributes the res-
idence permit. The residence permit is granted according to Dutch
government policies. This step corresponds to the second level ac-
cess control we described in section 5.1. Three trusted authorities
with three different policies are thus involved in this process.

The immigration system is manageable from the Malaysian govern-
ment perspective because the Malaysian government does not have to
know about Dutch government policy. The policies involved in issuing
a residence permit are primarily concerned with what the visitor intends
to do (study, work, vacation etc). The Malaysian government is not in-
volved and does not even care.

A public key certificate can be seen as a passport - it identifies the
owner, it tends to be valid for a long period, it is difficult to forge and it
has a strong authentication process to establish the owner’s identity. Our
attribute certificate is like an entry visa. A different authority issues it, and
in most cases, a passport has a longer validity than a visa. Consequently,
acquiring the entry visa becomes a simpler and more manageable proce-
dure. The entry visa will refer to the passport as a part of how that visa
specifies the terms under which the passport owner is authorized to enter
the country. Once the passport owner is identified and authenticated, the
visa may authorize her to enter the country. Once in the country, the trav-
eller may apply for a residence permit, which is then an analogue to our
digital license.

EXPERIMENTS IN RIGHTS CONTROL 105

5.3. RELATED WORK Identity–Attribute–Rights

5.2.2 Association of authorities
There must be a relationship between the authorities involved to establish
a chain of control. For example, the visa is a stamp in the passport; there-
fore, the link between visa and passport is difficult to break. In the digital
world, the public key certificate, attribute certificate and digital license are
linked using cryptographic techniques.

An identity may be associated with several attributes, that an attribute
may be associated with other attributes, and that an attribute may be as-
sociated with several rights. For example, Alice (identity) is an editor
(attribute) and she belongs to an administrative group (attribute). The ed-
itor is only allowed to enter the system at a given time (attribute). The
editor can print (rights) an annual report and she can view (rights) some
confidential document.

Because of the interposition of attributes between the identities and
the actual rights we call our system a security attribute based digital rights
management (SABDRM) system. The association between these three
properties identity, attribute and rights represents a chain of control. The
distinctive features of the SABDRM are:

1. The use of public key certificate, attribute certificate, content identi-
fication and a source of randomness to generate a secret, unique,
personalized content key. This should allow multiple use of the
same key to be detected with high probability.

2. A hierarchy of authorities that is able to provide for flexibility in the
rights management.

5.3 Related Work
Horne et al. [2001b] present a fair exchange protocol for peer-to-peer file
sharing which encourages people to comply with the rules by providing
incentives, such high quality of service, status or even air miles. Kwok and
Lui [2001] have proposed a license management model to provide peer-
to-peer sharing domain. They implement two types of services, one at
the server side and one at the client side, to handle consumer registration,

106 EXPERIMENTS IN RIGHTS CONTROL

Identity–Attribute–Rights 5.3. RELATED WORK

payment, and license issuing processes and to deal with licensing in peer-
to-peer distribution model.

Just regulating the distribution of digital content cannot solve the ille-
gal distribution problems alone; it is also necessary to check that rights vi-
olations do not happen. Techniques to achieve this include watermarking
and fingerprinting [Sellars, 1999]. Dittman et al. [2000] present a technol-
ogy for combining collusion-secure fingerprinting schemes based on finite
geometries and a watermarking mechanism with special marking points
for images. Fridrich [1998] introduces the concept of key-dependent basis
functions and discusses the applications to secure robust watermarking.
Brin et al. [1995] describe a copy detection server which identifies copies
of digital content, even for partial copies. Shivakumar and Garcia-Molina
[1996] have introduced a centralized server that can detect copy or reuse
(either part or whole) of digital documents. In our system, we are able to
detect super distribution thanks to key personalization.

Silbert et al. [1995] propose a self-protecting container, which they call
a DigiBox for protecting the digital content by providing a cryptograph-
ically protected environment for packaging content and enforcing rights.
The approach proposed by Durfee and Franklin [2000] investigates trust-
worthiness of the distribution chain (i.e. from the Producer to the Con-
sumers), which includes middlemen. Their approach allows trusted mid-
dlemen to alter rights but prohibits attackers from tampering with rights.

Voloshynovskiy et al. [2001] investigate various existing attacks on
digital watermarking systems. They show the fundamental limits of the
current watermarking technologies and argue that the present technologies
are still in their adolescent stage.

Our idea of the personalized key contains the characteristic of water-
marking, which embeds the user’s identity, her security attribute infor-
mation, the data of the content and the license. The personalized key is
unique (depends on the collision-resistant one-way hash function we use
to generate the key) and closely related to the content and the user. The
user needs the key to access the protected content. Therefore, we believe
that by keeping track of the key, we can keep track of the digital content
to some extent.

Finally, yet importantly, proprietary and trustworthy client-side DRM
is another problem that has been researched. The main goal is to achieve

EXPERIMENTS IN RIGHTS CONTROL 107

5.4. PROTOTYPE: SUMMER Identity–Attribute–Rights

application- and platform-independence, i.e. using different software ap-
plications to access the same protected digital content. Mourad et al.
[2001] implement an application, namely WebGuard that enables existing
Internet Explorer Browser and the browser’s plug-ins to handle protected
content. They use a technique dubbed ‘Windows sub classing’, which
bypasses the Windows message passing within the operating system and
application. We share their objective for application-independence but we
work at the application level instead of the operating system level. Horne
et al. [2001a] use software tamper resistance (by code obfuscation) to pro-
tect the client side. Lie et al. [2000] suggest architectural changes in the
hardware that will execute only encrypted code. Their contributions have
inspired our future work of applying tamper-resistant security token in a
DRM system.

5.4 Prototype: SUMMER

We have developed a prototype of our DRM system in the context of
the Secure Multimedia Retrieval (SUMMER) project. The main objec-
tive of SUMMER is to design a secure distributed multimedia database
management system for efficient multimedia retrieval from distributed
autonomous sources. Figure 5.1 shows the overview architecture of the
SUMMER system. The present paper focuses on the right part. The left
part (IAA-QM) is described only briefly below.

The Identification, Authentication and Authorization (IAA) module
decides the identity of the user and then establishes the security attributes
for that identity. Therefore, the IAA begins the chain of control of identity-
attribute. As described in section 5.2, attribute certificates and public key
certificates, which are generated and distributed by AA and CA respec-
tively, are used as means to achieve IAA.

The Query Module (QM) enforces access control in the system. The
QM acts as a filtering and monitoring environment on requests from the
client and results from the server. The requests and the results are de-
scribed using XML. A security policy file and the attribute of the client
are fed in to the module. The result displays a list of digital content ac-
cessible according to the attribute of the client. The details are beyond

108 EXPERIMENTS IN RIGHTS CONTROL

Identity–Attribute–Rights 5.4. PROTOTYPE: SUMMER

Web Browser

CLIENT
Content Renderer Plug-in

SERVER

Identification, Authentication
and Authorization Module

Attribute
Authority

Certificate
Authority

Query
Module

Content
Protection

Module

License
Module

(Clearing
House)

Log
Store

Raw
Content

Repository

Secure Key
Storage

Public Key
Certificatie

Attribute
Certificate

Public Key
Certificate

ResultRequest
Protected
Content License

Raw
Content Key Key

Log

DRMIAA-QM

Figure 5.1: The overview architecture of SUMMER.

the scope of this paper. Further information on IAA-QM can be found in
Damiani et al. [2000a,b]; Bertino et al. [1999]; Kudo and Hada [2000].

The DRM part (right half of Figure 5.1) is composed of four com-
ponents, namely the Content Module, the License Module, the Content
Renderer and the Plug-in. The DRM part completes the chain of control
started by IAA-QM, by linking the digital rights to identity-attribute. The
Content Module is composed of the following sub-components:

1. Content protection: generates, personalizes, and stores the digital
content encryption key in a secure fashion. We hash the public key
certificate, attribute certificate, content identity and some random
data to generate a key that is unique with a high probability.

2. Raw content repository: securely stores the unencrypted digital con-
tent.

3. Secure key storage: stores the content key generated by the Content
Protection module.

EXPERIMENTS IN RIGHTS CONTROL 109

5.4. PROTOTYPE: SUMMER Identity–Attribute–Rights

The License Module implements the CH (Clearing House). The Li-
cense Module generates digital licenses. The module also retrieves the
associated digital content key from the key storage, encrypted by using
the client’s public key, and embeds in the digital license. The security
attributes of the user, the identity of the digital content are fed into the
License Module for license generation. The License Module needs the se-
curity attributes to retrieve a list of access rights the user possesses for the
content. A digital license is generated on-demand and stored. The digital
license is signed by using the server’s private key.

The Log Store is used to store records of all transactions. The Log
Store is assumed to be secure [Schneier and Kelsey, 1998; Chong et al.,
2003e]. The Log records the content protection time and license genera-
tion time on the server side as well as license interpretation process and
time by the Plug-in on the client side. The Log Store provides a complete
overview of all actions the client has exercised on the digital content. The
purpose of the Log Store is to achieve non-repudiation, for audit trailing,
and if necessary for billing. All records from the Plug-in are signed by
using client’s private key to prevent the client from denying any of the
messages.

At the client side, a Web browser, i.e. Internet Explorer is used as an
interface to communicate between the client and the server. We use Adobe
Acrobat (http://www.adobe.com) as our Content Renderer to access the
digital content in the form of PDF files. We have created a Renderer spe-
cific plug-in to interface our server with Adobe Acrobat as a proof of
concept. For future work we plan to build a format/Renderer indepen-
dent client side application that interfaces to arbitrary Renderers via much
smaller Renderer specific plug-ins. The development of the plug-in to the
Adobe Acrobat gave us first-hand experience of application customization
and extension. The client side code plays an important role on:

1. Understanding and interpreting the protected digital content struc-
ture.

2. Validating the digital licenses (signature verification and time valid-
ity etc.).

3. Decrypting and retrieving the digital content key from the digital
license.

110 EXPERIMENTS IN RIGHTS CONTROL

Identity–Attribute–Rights 5.4. PROTOTYPE: SUMMER

4. Upholding and enforcing the client’s access rights (triggering on/off
the functions on the Renderer application) on the digital content ac-
cording to the digital rights stated on the digital license.

5. Logs all the client’s actions exercised on the digital content.

The Renderer and plug-in run in an insecure environment, which makes
it possible for unencrypted content to be leaked. This problem occurs with
most DRM systems. The problem can be solved to an extent by using tam-
per resistant hardware at the client side, and with watermarking techniques
(See Section 5.3).

The security features of the prototype are as follows:

1. The digital content is kept protected (encrypted) at the client-side.
Only when the user has the proper digital license and certificates,
can the protected digital content be decrypted and accessed by Adobe
Acrobat (using the plug-in).

2. The digital content key is personalized to the user (as described in
Section 5.4). Therefore, the key can be traced back to the user. The
owner of the key may thus be held responsible if a rights violation
is detected – detecting such violations is outside the scope of this
paper. The content key should never leave the confines of the user’s
machine.

3. The server (CH) is the only entity able to sign a license. Every client
can verify the signature on a License.

4. Clients are not anonymous.

5. Clients can exercise rights multiple times. To control this, secure
timers, counters and the like may be needed. This is an area of
future work.

5.4.1 Performance Evaluation
We have performed some experiments on our content server to measure
the overhead at the server side due to the on-demand content encryption

EXPERIMENTS IN RIGHTS CONTROL 111

5.4. PROTOTYPE: SUMMER Identity–Attribute–Rights

and licence generation. The measurements would allow us to determine
the limitations of the server, and the extent to which the system is scalable.

We used Apache (http://www.apache.org) on a Pentium III 650
MHz, 128 MB RAM machine as a server. We have installed the Jakarta
Tomcat (http://jakarta.apache.org) servlet container to interface with
Apache. The client is a Pentium III 850 MHz, 256 MB RAM, which is
connected to the server via an intranet 10Mbps Waveland.

The encryption algorithm we employed in the prototype is Blowfish
with 128bits key [Schneier, 1994]. We implement the Blowfish encryp-
tion using the JCE library. We have varied the block size for encryption
to see the possible influences on the performance. The two block sizes we
have chosen are 1KB (1024 bytes) and 8KB (8192 bytes). We have not
tested with larger block sizes, because a larger block size makes it harder
to hide the patterns of the plaintext securely [Schneier, 1996]. Timings
were generated by executing the target code block in a tight loop and by
using System.currentTimeMillis() to capture (wall clock) tim-
ing information. We have run two sets of tests on the prototype, measuring
time as a function of content size for content protection, as well as time as
a function of the number of users for content protection, as shown in Fig-
ure 5.2.

A typical video is 700MB (this just fits on a 700MB CD-R); a typical
MP3 is 3MB. All other digital document (TXT, PDF, DOC and so on) and
digital pictures (BMP, JPEG, GIF, and so on) can be as small as 1KB, or as
large as 10MB (or even bigger). To cover a significant variety of sizes of
digital content, we have chosen the range 7B, 70B, 700B, ... 7MB, 70MB,
700MB. We assume a 10Mbps network (typical cable modem for home
user). An MP3 can be downloaded in about 2 s, while a video takes 9 min.

The time spent downloading content is nearly a linear function of the
content size. The time taken to encrypt the content with 1kB block size
and 8kB block size hardly differs. We infer that varying encryption block
sizes does not show a significant difference. We found that the time en-
cryption for content size ranges from 7B to 100KB is less than 100 ms,
which is imperceptible to users. The time spent for an MP3 is approx-
imately 1 s, which is 50% of the time needed to download the content.
A typical 1 hour video of 700MB takes about 5 min to encrypt; this rep-
resents a 55% time overhead. However, by overlapping encryption and

112 EXPERIMENTS IN RIGHTS CONTROL

Identity–Attribute–Rights 5.4. PROTOTYPE: SUMMER

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

To
ta

l T
im

e
fo

r n
 u

se
rs

/T
im

e
fo

r 1
 u

se
r

No of n Users

The perfect scale
300KB size

3MB size
7MB size

Figure 5.2: Scaled time needed for content protection as a function of the number
of users activating the content encryption simultaneously.

downloading using streaming techniques [Shi and Bhargava, 1998; LaM-
onica, 2001], the time taken to encrypt can be completely hidden from the
user.

Figure 5.2 shows how the performance of the server degrades grace-
fully when there is more than one concurrent user. For each of three file
sizes 300KB, 3MB, and 7MB, and for each of n = 1, 2, ...10 concurrent
users we have made a number of measurements, and plotted the average of
these measurements in the figure. We have scaled the averages, dividing
the average time for n users by the average time for one user. The line
indicating perfect scalability is also shown. The performance of the server
is not affected by small content sizes, but it becomes overloaded if the
content size increases and/or if the number of concurrent users increases
beyond a certain point.

To avoid degrading the service beyond the point where content encryp-
tion time can no longer hidden from the user, the server could to decide
when to accept and when to reject further demands for content could on
the basis of these measurements. We have evaluated the license generation

EXPERIMENTS IN RIGHTS CONTROL 113

5.4. PROTOTYPE: SUMMER Identity–Attribute–Rights

time. The size of a digital license is around 10KB, and it can be generated
in 60±20ms per license. This is negligible with respect to the download
times for small content size.

We conclude from the measurements that the system is scalable for
digital documents, digital pictures and MP3 (of size around 3MB-7MB).

5.4.2 SPIN model
Designing correct security protocols is notoriously difficult [Lowe, 1996].
Many tools and systems are available to help the designer to analyse the
protocols. Our system includes some moderately complex protocols. There-
fore, we have used the SPIN model-checking tool [Holzmann, 1997] to
help us explore a key property of the protocol: preventing the re-distribution
of content. SPIN is able to explore the state space of a model looking for
undesirable states. An example of such an undesirable state is one where
content is intercepted by a Thief, and redistributed.

Thief1

Producer 0 Consumer 4

Thief2

Thief3 Consumer 5

Figure 5.3: Network with a Producer, three Thieves and two Consumers showing
arrows in the direction of Request message flow; License and Content messages
flow in the opposite direction.

Figure 5.3 Shows a network of six processes, where the server (la-
belled as Producer) supports five clients. Three clients play the role of
Thieves; the remaining clients (labelled Consumers) are honest, the Pro-
ducer is also honest. Only the Producer is able to create original Packaged
Content and Licenses. Thieves acquire Packaged Content and License

114 EXPERIMENTS IN RIGHTS CONTROL

Identity–Attribute–Rights 5.4. PROTOTYPE: SUMMER

from the Producer or from each other. Thieves would do this in order
to earn money: purchasing content for a certain price from the Producer,
then selling it for less money to many Consumers would enable Thieves
to earn arbitrary amounts of money. Consumers and Thieves can either
download Packaged Content and License from the Producer or from one
of the Thieves. Thief 3 demonstrates that another middleman can be in-
volved in a transaction. Of course, there are many networks involving any
number of Producers, Consumers and Thieves. We believe that the net-
work show in Figure 5.3 represents the essence of all such networks. The
processes shown in Figure 5.3 exchange three different types of messages.

• Request messages identify the desired content.

• Packaged Content messages contain the actual content encrypted
under a unique content key.

• License messages contain a content key, which is signed by the Pro-
ducer. The signed key is then encrypted under the public key of the
process requesting the license, i.e. a Consumer or a Thief.

Request messages flow in the direction of the arrows, response mes-
sages flow in the opposite direction. In response to reach Request mes-
sage, a Packaged Content and a License message are sent. For example
in the simplest scenario, Consumer 4 sends a Request message to the Pro-
ducer, which returns the appropriate Packaged Content and License mes-
sages to the Consumer.

To keep the model simple and yet to make it sufficiently expressive,
we have made the following simplifying assumptions:

• A private key is truly private, and public keys are universally known.

• A Thief must re-encrypt a License because every client requires that
a License be encrypted with her public key.

• The Producer and Consumer are honest; the Thieves are not. No
parties collude.

• The Producer never reuses a content key. This allows the Consumer
to check keys received for duplicates. A duplicate content key indi-
cates the involvement of a Thief.

EXPERIMENTS IN RIGHTS CONTROL 115

5.4. PROTOTYPE: SUMMER Identity–Attribute–Rights

• Encryption is modelled by including the key in a message. Decryp-
tion then becomes comparing keys.

The model is limited and could be extended in the number of ways:

• It is possible to eavesdrop on a channel; to model this is future work.

• The Thieves are really middlemen [Durfee and Franklin, 2000] with
bad intentions. A generalization to middlemen with good intentions
would be valuable.

• Billing is not taken into account, this would rely on non-repudiated
logging [Schneier and Kelsey, 1998].

The key property of any DRM system is to prevent illegal super dis-
tribution: Anyone other than the Producer trying to redistribute content
without permission or agreement from the Producer will eventually be
caught. To ensure this we rely on two assumptions: that all content keys
are unique, and that customers when receiving content keys are able to
check that the key received is fresh. We will show below that our SPIN
model satisfies this property. The SPIN model is of course an abstraction
of the real system, and as such provides no guarantees about the prototype.
However, the fact that the model satisfies the prevention of illegal super
distribution property demonstrates that the design of the system is sound.

We have run the model checker twice; once with the assertion by the
Consumer that every key is fresh commented out and once with the asser-
tion taking effect. No assertion violations were found with the assertion
on fresh keys commented out. With be fresh keys assertion effective, a
problem was found, as follows.

Firstly, a Consumer sends a Request message to a Thief, which in turn
sends a Request message to the Producer. The Producer responds with
Packaged Content and License message to the Thief, which caches the
Packaged Content and License, then sends it along to the Consumer. The
Thief takes care to re-encrypt the License with Consumers public key.

When the Consumer asks for the same content a second time, the Thief
has no choice but to resend the cached Packaged Content and License
again, and thus is caught. The price we have to pay for this level of security
is that the Clients have to be able to cache all license keys. This requires

116 EXPERIMENTS IN RIGHTS CONTROL

Identity–Attribute–Rights 5.5. CONCLUSIONS AND FUTURE WORK

in principle an unbounded amount of store. However, with an appropriate
hashing technique the storage requirements could be curtailed, as hashing
the same key twice is guaranteed to give a collision. The question then
remains how to deal with falls positives. This is an area for future research.

5.5 Conclusions and Future Work
We propose a Digital Rights Management system for multimedia con-
tent that separates the authorities involved in three categories: Identity,
Attribute and Right. This separation creates flexibility because each au-
thority has a significant degree of autonomy. The link between the author-
ities is established using cryptographic means to build a chain of control
(identity-attribute-rights). Hashing the public key certificate, attribute cer-
tificate, license identity and some random data generates the content key.

We describe a prototype implementation of the system, with a perfor-
mance evaluation from a users perspective. We have measured the average
time needed for content encryption and license generation when simulta-
neously serving several users and the average time needed for content en-
cryption while varying the size of the content. The measurements indicate
that the system is scalable for digital documents, digital pictures and MP3
(of size around 3MB-7MB). A SPIN model of the system is used to vali-
date the main protocols. Our validation result with the SPIN model asserts
that super distribution is prevented when content keys are unique.

The server side DRM of our prototype is document and Renderer in-
dependent. The prototype uses Adobe Acrobat to render content. An
Acrobat specific plug-in is responsible for the client side DRM. The DRM
client functions as a validator for the chain of control constructed by the
server, as a detector for key/license violation. The DRM client also acts as
a secure store for licenses (akin to installing certificates on Web browsers).

Appendix: SPIN Model
/*
Verification takes about 10 mins, at 96 Mbyte, Supertrace
*/

EXPERIMENTS IN RIGHTS CONTROL 117

5.5. CONCLUSIONS AND FUTURE WORK Identity–Attribute–Rights

#define NumChaches 4
#define NumServers 4
#define NumRequests 10

#define mkcontent(n) (2*n)
#define mkkey(p, n) (NumRequests*(p+1)+n)

#define tprocess byte
#define tkey byte
#define tsignature byte
#define tnumber byte
#define tcontent byte

mtype = {Request, PackagedContent, License,
NoPackagedContent, NoLicense} ;

/* Server input channels (Producer or Thieves) */
chan ch[NumServers] = [0]

of {mtype, tprocess, tnumber, chan, chan} ;

#define pp 0

proctype Producer(tprocess mp) {
tnumber n ;
tcontent c ;
tkey dk ; /* Content encryption key */
tkey lk ; /* License encryption key */
tsignature sk ; /* License signature key */
tprocess rp ; /* Client process id */
chan rod ; /* Content output channel */
chan rol ; /* License output channel */
byte cnt ; /* Generate unique content key */

cnt = 0 ;
end:do

:: ch[mp]?Request(rp, n, rod, rol) ;
if
:: cnt < NumRequests ->

dk = mkkey(mp, cnt) ;
cnt++;
c = mkcontent(n) ;
sk = mkkey(pp, 0) ;
lk = mkkey(rp, 0) ;

rod!PackagedContent(n, c, dk) ;
rol!License(n, dk, sk, lk)

:: else ->
rod!NoPackagedContent(0, 0, 0) ;
rol!NoLicense(0, 0, 0, 0)

fi
od

}

118 EXPERIMENTS IN RIGHTS CONTROL

Identity–Attribute–Rights 5.5. CONCLUSIONS AND FUTURE WORK

proctype Thief(tprocess lp; tprocess mp) {
tnumber n ;
tcontent c ;
tkey dk1 ; /* Content encryption key */
tkey dk2 ;
tkey lk ; /* License encryption key */
tsignature sk ; /* License signature key */
tprocess rp ; /* Client process id */
chan rod ; /* Content output channel */
chan rol ; /* License output channel */

/* input channel from server */
chan lid = [0]

of {mtype, tnumber, tcontent, tkey} ;
chan lil = [0]

of {mtype, tnumber, tkey, tsignature, tkey} ;

/* Cached document and license queues */
chan qd = [NumChaches]

of {mtype, tnumber, tcontent, tkey} ;
chan ql = [NumChaches]

of {mtype, tnumber, tkey, tsignature, tkey} ;

end: do
:: ch[mp]?Request(rp, n, rod, rol) ;

if
:: qd??[PackagedContent(eval(n), c, dk1)] ->

qd??<PackagedContent(eval(n), c, dk1)> ;
ql??<License(eval(n), dk2, sk, _)> ;
assert(dk1 == dk2) ;
lk = mkkey(rp, 0) ; /* (re) encrypt */
rod!PackagedContent(n, c, dk1) ;
rol!License(n, dk2, sk, lk) ;

:: else ->
ch[lp]!Request(mp, n, lid, lil) ;
if
:: lid?PackagedContent(n, c, dk1) ->

lil?License(n, dk2, sk, lk) ;
assert(dk1 == dk2) ;
assert(sk == mkkey(pp, 0)) ;
assert(lk == mkkey(mp, 0)) ;
qd!PackagedContent(n, c, dk1) ;
ql!License(n, dk2, sk, 0) ;
lk = mkkey(rp, 0) ; /* re-encrypt */
rod!PackagedContent(n, c, dk1) ;
rol!License(n, dk2, sk, lk)

:: lid?NoPackagedContent(_, _, _) ->
lil?NoLicense(_, _, _, _) ;
rod!NoPackagedContent(0, 0, 0) ;
rol!NoLicense(0, 0, 0, 0)

fi
fi

od

EXPERIMENTS IN RIGHTS CONTROL 119

5.5. CONCLUSIONS AND FUTURE WORK Identity–Attribute–Rights

}

proctype Consumer(tprocess mp) {
tnumber n ;
tcontent c ;
tkey dk1 ; /* Content encryption key */
tkey dk2 ;
tprocess lp ; /* Server process id */
tkey lk ; /* License encryption key */
tsignature sk ; /* License signature key */

/* input channel from server */
chan lid = [0]

of {mtype, tnumber, tcontent, tkey} ;
chan lil = [0]

of {mtype, tnumber, tkey, tsignature, tkey} ;

/* Cached document queues */
chan qk = [NumRequests] of {tkey} ;

end:do
:: /* Non-deterministic choice of document number */

if
:: n = 1
:: n = 2
:: n = 3
fi ;
/* Non-deterministic choice of server */
if
:: lp = pp
:: lp = 1
:: lp = 2
:: lp = 3
fi ;
ch[lp]!Request(mp, n, lid, lil) ;
if
:: lid?PackagedContent(n, c, dk1) ->

lil?License(n, dk2, sk, lk) ;
assert(dk1 == dk2) ;
assert(sk == mkkey(pp, 0)) ;
assert(lk == mkkey(mp, 0)) ;
assert(c == mkcontent(n)) ;
assert(! qk??[eval(dk1)]) ; /* Comment line out */
if
:: full(qk) ->

break
:: nfull(qk) ->

qk!dk1
fi

:: lid?NoPackagedContent(_, _, _) ->
lil?NoLicense(_, _, _, _) ;
break

fi
od

120 EXPERIMENTS IN RIGHTS CONTROL

Identity–Attribute–Rights 5.5. CONCLUSIONS AND FUTURE WORK

}

init {
atomic {

run Producer(pp) ;
run Thief(pp, 1) ;

run Consumer(4) ;
run Thief(pp, 2) ;

run Thief(2, 3) ;
run Consumer(5) ;

}
}

EXPERIMENTS IN RIGHTS CONTROL 121

CHAPTER 6

LICENSESCRIPT INTERPRETER

Service Brokerage with Prolog5

Cheun Ngen Chong, Sandro Etalle, Pieter Hartel, Rieks Joosten, and
Geert Kleinhuis

Abstract Service brokerage is a complex problem. At the design stage
the semantic gap between user, device and system requirements must be
bridged, and at the operational stage the conflicting objectives of many
parties in the value chain must be reconciled. For example why should
a user who wants to watch a film need to understand that due to limited
battery power the film can only be shown in low resolution? Why should
the user have to understand the business model of a content provider? To
solve these problems we present (1) the concept of a packager who acts as
a service broker, (2) a design derived systematically from a semi-formal
specification (the CC-model), and (3) an implementation using our Prolog
based LicenseScript language.

5A short version of this chapter has been published in the Proceedings of 7th Inter-
national Conference on Enterprise Information Systems (ICEIS 2005), May 2005, pages
To appear. INSTICC Press.

123

6.1. INTRODUCTION LicenseScript Interpreter

6.1 Introduction

A service is a combination of an application and its maintenance. The
application implements the functionality required, e.g. making available a
communication channel, playing a song. The maintenance ensures avail-
ability e.g. fast delivery, high bandwidth, 24 hour access.

Services are characterized by a wide variety of parameters [Yang and
Chou, 2003], for example the capability of the service delivery (e.g. band-
width), the flexibility of the service access (e.g. availability of the service
24 hours), and the restrictions on the service usage (e.g. device limitation).
These parameters make service brokerage a complex problem.

Users have a wide variety of service requirements. For instance, they
want to: have their services delivered promptly and installed properly;
use their services anywhere and anytime; have a wide choice of services
with various prices, qualities, etc; and they want to ensure that the tech-
nical limitations of their devices are taken into account when they acquire
(purchase, lease etc) the service. In addition, users would like to protect
their privacy. On the other hand, service providers have their own require-
ments. They need to have their services published, promoted, and more
importantly paid for promptly. They also need to control the access rights
of the services according to contracts established with the users. There-
fore, with these different requirements from both sides of the value chain,
service management becomes a complex issue.

We present the concept of a packager who acts as a service broker,
and we present an implementation as part of the Residential Gateway En-
vironment (RGE) project [Joosten et al., 2003; Hillen et al., 2002]. Our
contribution is two-fold: (1) During the design stage, we show how to de-
rive the complex infrastructure for the service management from a semi-
formal high-level description: the “Calculating with Concept”(CC) [Dijk-
man et al., 2001]. We encode all aspects of service brokerage in Licens-
eScript [Chong et al., 2003a,b] using logic programming. (2) During the
operational stage, we show efficiently LicenseScript handles the diverse
requirements of all parties involved.

LicenseScript is based on Prolog and multiset rewriting and allows
one to express licenses, i.e. conditions of use on dynamic data. Prolog has
the advantage of combining an operational semantics (needed, e.g., in ne-

124 EXPERIMENTS IN RIGHTS CONTROL

LicenseScript Interpreter 6.2. RGE INFRASTRUCTURE

gotiations) with a straightforward declarative reading. Elsewhere, Prolog
has also proven itself to be suitable for describing complex access poli-
cies, as demonstrated by the security language Binder [DeTreville, 2002].
Our addition of multiset rewriting to Prolog allows to encode in an ele-
gant and semantically sound way the state of a license. The semantics
of LicenseScript is given in terms of traces [Chong et al., 2003b]. Here,
we demonstrate the practical value of LicenseScript by using it as intel-
ligent messaging middleware for the RGE project. The result is a large
distributed software platform which we describe in this paper. The plat-
form consists of the following main components (we will elaborate these
components later in section 6.4): Tomcat Server, MySQL database, JDBC
database interface, etc: 50 JSP (Java Server Page) files, 20 SWF (Shock-
wave Flash) files. In addition we have the Prolog-based components: the
ECLiSe Prolog inference engine, the LicenseScript meta-interpreter, Java
user interface and RMI interfacing with RGE components: 6 Java and 2
Prolog source files.

Section 6.2 introduces the overall infrastructure of the RGE service
management and its CC model. Section 6.3 derives LicenseScript from the
CC model. Section 6.4 describes the RGE implementation. Section 6.5
discusses related work and the last section concludes and presents future
work.

6.2 RGE Infrastructure
We present the overall infrastructure of RGE service management together
with the CC method. As shown in Figure 6.1, the RGE architecture sup-
ports three main roles: the residential gateway (RG), the packager (P) and
the service providers (SP).

• Service providers provide services (S), e.g. access to music, videos,
but also bandwidth.

• The packager behaves as a service broker, being able to manipulate
and integrate the services provided by the various SPs.

• The residential gateway is where the services actually run. A power

EXPERIMENTS IN RIGHTS CONTROL 125

6.2. RGE INFRASTRUCTURE LicenseScript Interpreter

Residential
Gateway

(power user)

Packager

Service
Provider

Device
(user)

O
ut

si
de

 th
e

ho
us

e
In

si
de

 th
e

ho
us

e

Service
Provider

Service
Provider

Figure 6.1: The service management architecture of the RGE.

user (PU) of the RG is allowed to (un)subscribe to services. All
users (U) are allowed to use the services.

The packager has some control (on behalf of the SPs) over the services
that are made available on the residential gateway. More importantly, the
packager tries to match service characteristics (C) to user demands (LD).
To achieve this, the packager has to have a business relation with the RG
on one hand and with the service providers at the other end of the value
chain.

In the rest section, we briefly introduce the CC method and we specify
the RGE service management infrastructure.

6.2.1 CC Model
To develop the RGE infrastructure, den Hartog et al. [2004] use the Cal-
culating with Concepts (CC) method, which can be seen as an extension
of Entity-Relationship diagrams. The basic ingredients of a CC model
are (a) entities, (b) relations and (c) restrictions. The rationale behind the
CC-method is that every engineer involved in a project has a different in-

126 EXPERIMENTS IN RIGHTS CONTROL

LicenseScript Interpreter 6.2. RGE INFRASTRUCTURE

terpretation of the system requirements. The CC method is then used in
group discussions to iron out these differences, and thus help to develop a
consistent frame of reference.

RG

C

LD

sup

ipo
P

req

hbrw2 S

has1

cpl

p

PU
has2

run

is
t

U

SP

apt

use

prov

hbrw1

Service Model

Contract Model

Service
Provisioning Model

Figure 6.2: Three of the many CC models of the RGE service management in-
frastructure.

Figure 6.2 presents a simplified CC-model for the RGE architecture
centered on service brokerage. There are many other, similar models cen-
tering on other, relevant aspects. The models are related through the use
of a common vocabulary for entities, relations and restrictions.

The roles of the RGE service management infrastructure are repre-
sented by the CC entities RG, SP, PU, U, and P (see Table 6.1). These
roles interact through the entities service (S), characteristics (C), and list
of demands (LD). Entities, relations and restrictions are described in fur-
ther detail in Tables 6.1, 6.2 and 6.3, respectively. Notice that the restric-
tions listed in Table 6.3 largely determine the semantics of the CC model.

EXPERIMENTS IN RIGHTS CONTROL 127

6.2. RGE INFRASTRUCTURE LicenseScript Interpreter

For details of the CC model derivation process, the reader may refer to
[Joosten et al., 2003].

Abbr. Entity
C Service characteristic, e.g. the quality, etc
LD List of demands, which a service must comply with
P Packager
RG Residential gateway
S Service
SP Service provider
U Normal user who uses the service
PU Power use who possesses the administrative power on RG

Table 6.1: The CC entities of the Service Model.

Abbr. Relation
apt Power user assigns permission(s) to user.
cpl Service complies with list of demands.
has1 Service has characteristic.
has2 Residential gateway has (is owned by) power user.
hbrw1 Packager has a business relation with service provider.
hbrw2 Packager has a business relation with residential gateway.
ipo Characteristic is part of list of demands.
ist Power user has subscribed to service.
p Packager permits service.
prov Service provider provides service.
req Packager requires list of demands.
run Service runs on residential gateway.
sup Residential gateway supports characteristic.
use User uses service.

Table 6.2: The relations between the entities of the Service Model.

128 EXPERIMENTS IN RIGHTS CONTROL

LicenseScript Interpreter 6.2. RGE INFRASTRUCTURE

Cardinality Restrictions
1 Every user is created by one and only one power user.
2 Every user has been assigned permissions by one and only one

power user.
3 Every residential gateway has one and only one power user.
4 Every packager permits at least one service.
5 Every packager has a business relation with at least one service

provider.
6 Every packager has a business relation with at least one residential

gateway.
7 Every service is provided by at least one service provider.
8 Every service has at least one characteristic.
9 For every list of demands, there is at least one characteristic that

is part of that list of demands.
10 Every packager requires at least one list of demands.
Other Restrictions
11 If a service s complies with list of demands ld, and characteristic

c is part of ld, then s has c.
12 If a user u uses service s, then u has been assigned a permission

by power user pu that is subscribed to s.

Table 6.3: The CC restrictions of the Service Model.

EXPERIMENTS IN RIGHTS CONTROL 129

6.3. LICENSESCRIPT DERIVATION LicenseScript Interpreter

6.3 LicenseScript Derivation
We now briefly introduce the LicenseScript language, then we will show
how to derive a LicenseScript specification from the CC model just pre-
sented.

LicenseScript [Chong et al., 2003a] is a formalism that can be used
to specify access control and manipulation of licenses on digital content
like music, video, software etc. The unique feature of LicenseScript is
that licenses actually carry Prolog code (representing access and usage
conditions) together with bindings, that can be used to store the state of
the license.

In LicenseScript we work with objects (licenses) and rules. Licens-
eScript objects have the form:

object_name(Content,Clauses,Bindings)

Here object name is the name of the object; Content is a content
identifier which is associated to this object; Clauses is a set of Pro-
log clauses, and Bindings is a set of attributes pertaining to the object.
Rules have the form:

rule_name(arguments): lhs -> rhs <== Condition

Here lhs and rhs are multisets of objects. Condition is a logical
formula that may refer to the clauses defined in the objects contained in
lhs. Because of this, rules are second-order constructs; objects are first
order.

Intuitively, objects are pieces of enhanced (mobile) Prolog code, while
rules are there to manipulate the objects and to query the code they carry.
Rules are not mobile, and can be thought of as being the interface between
the devices and the mobile code. Consider as an example the following
rule:

offer(Service,S,P) :
contracts(Service,Ccon,Bcon),
characteristics(Service,nil,Bcha1)

-> contracts(Service,Ccon,Bcon),
characteristics(Service,nil,Bcha1’),
characteristics(Service,nil,Bcha2)

<= Ccon |- canoffer(Bcon,Bcha1,Bcha1’,Bcha2,S,P)

130 EXPERIMENTS IN RIGHTS CONTROL

LicenseScript Interpreter 6.3. LICENSESCRIPT DERIVATION

This rule rewrites the multiset:

contracts(Service,Ccon,Bcon),
characteristics(Service,nil,Bcha1)

into the following multiset:

contracts(Service,Ccon,Bcon),
characteristics(Service,nil,Bcha1’),
characteristics(Service,nil,Bcha2)

The proviso is that the query canoffer(·) succeeds when fired in
the set of clauses Ccon.

The use of multiset rewriting allows us to model in all logical yet effec-
tive way the presence of mutable resources that not only can be modified,
but also created and destroyed.

6.3.1 Deriving Licensescript
We now show how to derive LicenseScript code from the CC model. We
propose a set of derivation rules to map the various CC components (i.e.
entities, relations and restrictions) onto LicenseScript objects and rules,
and/or the content, clauses and bindings of the objects.

1. We start from the service (entity S, inside the innermost circle) be-
cause this is the central entity in RGE service management. Each
instance of S is then mapped onto the content part of an appropriate
LicenseScript object.

2. Entities are split into two groups:

• Those that have a direct relationship with S (C and LD in the
middle circle) are mapped into LicenseScript objects.

• Those that have an indirect relationship with S (RG, P, SP and
U, in the outer circle) are mapped into LicenseScript bindings.

3. Relations between the entities are mapped onto clauses, the body of
which must reflect the cardinality restrictions of the relation.

4. Other general CC restrictions are captured by LicenseScript multiset
rewrite rules.

EXPERIMENTS IN RIGHTS CONTROL 131

6.3. LICENSESCRIPT DERIVATION LicenseScript Interpreter

LicenseScript Object Description
characteristics(S,nil,B) Represents characteristics of a

service.
demands(S,C,B) Represents list of demands re-

quired.
license(S,C,B) Represents permissions/rights.
contracts(S,C,B) Represents business relations.

Table 6.4: The LicenseScript objects representing CC entities, where S represents
the service; C denotes a set of clauses; and B is a set of bindings.

6.3.1.1 Objects

Objects are the result of mapping entities of the middle circle: LD be-
comes demands(S,C,B)while C is mapped onto characteristics
(S,C,B). In addition, to communicate with the external world, (Con-
tract Models and Service Provisioning Models, in Figure 6.2), we use the
objects license(S,C,B) and contracts(S,C,B). Table 6.4 pro-
vides a summary. The reader may refer to the technical report [Joosten
et al., 2003] for more information.

6.3.1.2 Clauses

In principle, derivation rule #3 maps each cardinality relation onto a sep-
arate clause. To improve efficiency, we map more than one CC relation
onto a single clause. For instance, we use the clause cangrant(·) to
capture both relations has2 and apt. This clause allows the power user to
assign the license (i.e. grants the usage permissions) to normal users:

cangrant(Blic1,Blic1’,Blic2,Poweru,User) :-
get_value(Blic1,power_user,Pu),
authenticate(Pu,Poweru),
set_value(Blic1,user,User,Blic1’).

Here Blic and Blic1’ are bindings. To access these bindings
we use the primitives below to get (resp. set) the value associated with
Name in Bindings:

get_value(Bindings,Name,Value)

132 EXPERIMENTS IN RIGHTS CONTROL

LicenseScript Interpreter 6.3. LICENSESCRIPT DERIVATION

set_value(Bindings,Name,Value,NewBindings)

As a second example, the clause canuse(·) allows to capture the
relations run and use. canuse authenticates and checks that the service
actually runs on the residential gateway (the binding enabled):

canuse(Blic,Blic’,User) :-
get_value(Blic,user,U),
get_value(Blic,enabled,E),
E == true, authenticate(U,User).

We conclude this part by showing a more complex example. canpermit
(·) authenticates the packager to ensure its genuineness, before enabling
the service to the residential gateway; relations p and ist are captured here.

canpermit(Bdem,Bdem’,Blic,Clic,Pack) :-
get_value(Bdem,packager,P),
get_value(Bdem,service_provider,S),
get_value(Bdem,license_clauses,Clic),
authenticate(Pack,P),
set_value(Bdem,enabled,true,Blic).

The parameter Clic allows to extract a whole new set of clause from
the bindings and to create a new LicenseScript object with it.

Other clauses are derived in the same way from the CC model. A
summary of the definitions is given in Table 6.5.

Clause Object Relations Restrictions
cancomply(·) demands(·) has1, cpl,

ipo, sup
8, 9, 10

canpermit(·) demands(·) p, ist 4
canoffer(·) contracts(·) prov 5, 7
canrequest(·) contracts(·) req 6
cangrant(·) license(·) has2, apt 2, 3
canuse(·) license(·) use, run 1

Table 6.5: The LicenseScript clauses that capture the relations in Table 6.2 and
the conditions of success for the restrictions in Table 6.3.

EXPERIMENTS IN RIGHTS CONTROL 133

6.3. LICENSESCRIPT DERIVATION LicenseScript Interpreter

6.3.1.3 Rules

Rules provide the necessary interface between the outside world and the
LicenseScript objects. The simplest example of rule is use, which is
invoked by the user to actually use a service. The rule just has to check
for the presence of a license:

use(Service,U) :
license(Service,Clic,Blic1)

-> license(Service,Clic,Blic2)
<= Clic |- canuse(Blic1,Blic2,U)

canuse(Blic1,Blic2,U) is queried in Clic (a failure of the
query would indicate that the license is no longer valid; e.g. it might have
expired); after successful completion of the query the license is replaced
by another one with a the new set of bindings Blic2.

A more complex rule is grant, which duplicates a license. The power
user would execute grant to grant some permissions/rights to a normal
user:

grant(Service,U1,U2) :
license(Service,Clic,Blic1),

-> license(Service,Clic,Blic1’),
license(Service,Clic,Blic2)

<= Clic |- cangrant(Blic1,Blic1’,Blic2,U1,U2)

This rule generates a new license(·) for the user.
Finally we present the rule permit, with which the packager gener-

ates a license for some service to be run on the residential gateway:

permit(Service,P,S) :
demands(Service,Cdem,Bdem),
characteristics(Service,nil,Bcha)

-> demands(Service,Cdem,Bdem’)
characteristics(Service,nil,Bcha’),
license(Service,Clic,Blic)

<= Cdem |- canpermit(Bdem,Bdem’,Blic,Clic,P),
Cdem |- cancomply(Bdem,Bdem’,Bcha,Bcha’)

The object demands(Service,Cdem,Bdem) indicates that a user
has requested Service; Cdem and Bdem are respectively a set of clauses

134 EXPERIMENTS IN RIGHTS CONTROL

LicenseScript Interpreter 6.3. LICENSESCRIPT DERIVATION

and a set of bindings that – combined – specify extra side conditions such
as the maximum bandwidth, the price the user is willing to pay, etc. By
calling canpermit, the packager checks if permission can be granted.
canpermit also returns the clauses that will be used in the new license.
On the other hand, cancomply validates the service request (See below).

6.3.2 Service Requirements Validation
We now define how the packager validates a service request, first using a
simplified version of the cancomply(·) clause:

cancomply(Bdem,Bdem’,Bcha,Bcha’) :-
get_value(Bdem,bandwidth,X1),
get_value(Bcha,bandwidth,X2),
get_value(Bdem,quality,Y1),
get_value(Bcha,quality,Y2),
get_value(Bdem,billing,Z1),
get_value(Bcha,billing,Z2),
X1 >= X2, Z1 = Z2, Y1 =< Y2.

The last line shows the use of constraints to ensure that the maximum
bandwidth of the user’s device meets the minimum bandwidth required
for the service; that the billing status of the user meets the requirement
of the service provider; and that the quality measure required by the user
does not exceed the offered quality.

Alternatively, one can use a parametric approach, in which the list of
requirements to be complied with is stored in the license:

cancomply(Bdem,Bdem’,Bcha,Bcha’) :-
get_value(Bcha,requirements,Requirements),
meets_requirements(Requirements).

meets_requirements([]).
meets_requirements([[Req_name,Req_value]|Reqs]):-

check_requirement(Req_name,Req_value),
meets_requirements(Reqs).

Recall that (see rule permit above) the query cancomply is fired
in the set of clauses Cdem specified in the user’s demand demands(

EXPERIMENTS IN RIGHTS CONTROL 135

6.4. RGE DEMONSTRATOR LicenseScript Interpreter

Service, Cdem, Bdem). Therefore cancomply can check that the
service specification meets the the constraints set out in the user’s demand.

Related to this, Corin et al. [2003] have demonstrated that Licens-
eScript allows one to define flexible payment policies that may be set by
users. This is non-trivial as there may be more than one service provider
interacting with one packager:

Java/C
lass

RMI
ECL iPSe

(Prolog)

RGE Rules

Meta-Interpreter

User Interface
(Java)

LicenseScript

Browser
(Webpad)

Tomcat
JavaServer

Pages Java

JavacClass

JDBCMySQL

RGE

Figure 6.3: Configuration of the RGE demonstrator software components.

6.4 RGE Demonstrator
We have finally come to the RGE demonstrator proper. As shown in Fig-
ure 6.3, the demonstrator contains a number of off-the-shelf software com-
ponents. On the right hand side we find among others the Tomcat server
and the MySQL database.

The left hand side of Figure 6.3 zooms in on the specific Licens-
eScript components. The basic one is the LicenseScript meta-interpreter,
which is implemented using ECLiPSe (http://www.icparc.ic.ac.uk/
eclipse/).

The core of the LicenseScript meta-interpreter is a simple extension of
the vanilla meta-interpreter presented in [Sterling and Shapiro, 1994]:

solve([],_).
solve([Query|Queries],Program) :-

136 EXPERIMENTS IN RIGHTS CONTROL

LicenseScript Interpreter 6.4. RGE DEMONSTRATOR

copy_term(Program,Temps),
member((Query:-Body),Temps),
solve_body(Body),
solve(Queries,Program).

solve_body(true).
solve_body((Goal1,Goal2)) :-

solve_body(Goal1),solve_body(Goal2).
solve_body(Goal) :-

call(Goal).

The only difference lies in the fact that LicenseScript runs a query in
a specific Program. Multiset rewriting has also been implemented in
Prolog [Chong et al., 2003a].

Figure 6.4: The LicenseScript Interpreter user interface.

The meta-interpreter is interfaced with the Tomcat server via a Java
interface, which is called by remote method invocation (RMI).

Figure 6.4 reports a snapshot of the (Java) user interface for the Li-
censeScript components. Various buttons allow the user to view the Li-
censeScript objects in the various devices of the multiset. The text area
underneath the buttons logs and displays the status of the execution of the

EXPERIMENTS IN RIGHTS CONTROL 137

6.4. RGE DEMONSTRATOR LicenseScript Interpreter

meta-interpreter and the ECLiPSe engine. The multiset viewer allows the
users to observe the status of the LicenseScript objects before and after
the execution.

As shown in Figure 6.5, when the demands and the characteristics of
the service do not match, a dialog notifies the packager.

Figure 6.5: A dialog showing that the demands and the characteristics of the
service do not match.

To conclude this section, we show a snapshot of the RGE demonstrator
in Figure 6.6. The leftmost Web browser represents the service provider,
the middle is the packager and the rightmost is the residential gateway.

Figure 6.6: The RGE demonstrator.

138 EXPERIMENTS IN RIGHTS CONTROL

LicenseScript Interpreter 6.5. RELATED WORK

6.5 Related Work

We discuss related work on Web service management and service broker-
age in section 6.5.1 and section 6.5.2, respectively.

6.5.1 Web Service Management

Web services are services provided over the Internet. Web services are de-
scribed using the XML-based Web Services Description Language (WSDL)
(http://www.w3.org/TR/wsdl). WSDL provides a simple way for ser-
vice providers to describe the basic format of requests (made by the users)
to their systems regardless of the underlying protocol and the message
encoding format. The underlying protocol of WDSL is the Simple Ob-
ject Access Protocol (SOAP) (http://www.w3.org/TR/SOAP/). SOAP
is used to describe the envelope and message format. In addition, SOAP
provides a basic request/response handshake protocol that for exchanging
structured information. WSDL/SOAP have emerged as a standard for han-
dling Web service architecture. They have been deployed in some current
Web service frameworks, e.g. IBM WebSphere (http://www.ibm.com/
websphere) and Microsoft .Net (http://www.microsoft.com/net).

WSDL describes the Web services merely as a set of end-points (of
the connections) operating on the messages. This makes it difficult to
match parameterised service requests to offerings because matching re-
quires flexibility in making the connections. This is precisely what Licens-
eScript is good at. On the other hand LicenseScript provides no facility
for the description of message transmission format and message exchange
protocol, as WSDL/SOAP does; these facilities are beyond the scope of
LicenseScript.

As mentioned earlier, there exist several frameworks for Web ser-
vice management, e.g. Java 2 Platform Enterprise Edition (J2EE) (http:
//java.sun.com/j2ee) (which is integrated in the IBM WebSphere) and
Microsoft .Net. These frameworks provide facilities for service descrip-
tion, service implementation, service publishing, discovery and binding,
as well as service invocation and execution [Fletcher et al., 2003]. In Li-
censeScript, we have concentrated on service description. Actually, the
overall RGE project has addressed the service implementation, service in-

EXPERIMENTS IN RIGHTS CONTROL 139

6.6. CONCLUSIONS AND FUTURE WORK LicenseScript Interpreter

vocation and execution.

6.5.2 Service Brokerage
We have seen how LicenseScript can be used for service brokerage. We
now discuss related work on this topic.

Bichler and Segev [1999] present a framework for service brokerage,
where the broker is represented as an agent. Typically, an agent is pro-
grammed to search and aggregate the information from the Internet. An
advanced agent is able, for example, to perform price comparison on some
products (e.g. BargainFinder [Greenwald and Kephart, 1999]); or to nego-
tiate and participate in an online auction on behalf of its owner [Guttman
and Maes, 1998].

While agents provide an elegant and convenient way to model tasks
such as service brokerage, their deployment can raise privacy concerns
and security problems [Chess, 1998]: agents need to be protected against
possible malicious host, and vice versa.

Our licenses are mobile and contain code (Prolog clauses) and data
(Bindings); in this sense licenses can be interpreted as agents. However,
we make a number of assumptions to alleviate security problems. In par-
ticular we assume that the rules and the prolog engine can be trusted (they
represent the firmware of our devices).

6.6 Conclusions and Future Work
We present one of the central concepts of the LicenseScript-RGE demon-
strator, i.e. the packager, who acts as a service broker. We derive its
implementation in our Prolog based LicenseScript language, using a sys-
tematic derivation from a semi-formal specification (the CC-model).

Prolog proves to be a very suitable platform for implementing a com-
plex broker such as the one we have presented, in particular:

• To represent complex services in a flexible and efficient manner one
needs to employ executable (mobile) code of some kind. To ma-
nipulate services it is therefore necessary to employ a second-order
system. Prolog is perfect for this.

140 EXPERIMENTS IN RIGHTS CONTROL

LicenseScript Interpreter 6.6. CONCLUSIONS AND FUTURE WORK

• Services should not only be executable, but should have a clear and
concise semantics (after all, they are licenses). The close relation
between operational and the declarative semantics of Prolog is an
invaluable advantage.

• Prolog is ideal to match requirements, and good at resolving con-
flicts. Therefore it is a natural platform for service brokerage.

Thanks to Prolog’s expressive power – the LicenseScript engine con-
sists of just a few dozens of lines of code. Also services (which are repre-
sented as objects, containing Prolog code), usually require only few Prolog
lines to be described.

In the future, we are planning to implement the concept of authorized
domain [van den Heuvel et al., 2002] in the RGE. We would also like
to enhance the security of LicenseScript objects by using some tamper-
resistant hardware [Chong et al., 2003e].

EXPERIMENTS IN RIGHTS CONTROL 141

CHAPTER 7

SECURE AUDIT LOGGING

Secure Audit Logging with Tamper-Resistant Hardware6

Cheun Ngen Chong, Zhonghong Peng, and Pieter H Hartel

Abstract Secure perimeter schemes (e.g. DRM) and tracing traitor schemes
(e.g. watermarking, audit logging) strive to mitigate the problems of con-
tent escaping the control of the rights holder. Secure audit logging records
the user’s actions on content and enables detection of some forms of tam-
pering with the logs. We implement Schneier and Kelsey [1998] se-
cure audit logging protocol, strengthening the protocol by using tamper-
resistant hardware (an iButton) in three ways: Firstly, our implementation
of the protocol works offline as well as online. Secondly, we use unforge-
able timestamps to increase the possibilities of fraud detection. Lastly, we
generate the authentication keys, core security of Schneier and Kelsey’s
protocol on the iButton to alleviate the possibilities of malicious client
generating the bad keys. We provide a performance assessment of our im-

6This chapter has been published in 18th IFIP International Information Security Con-
ference (IFIPSEC), volume 250 of IFIP Conference Proceedings, 2003, pages 73–84.
Kluwer Academic Publishers.

143

7.1. INTRODUCTION Secure Audit Logging

plementation to show under which circumstances the protocol is practical
to use.

7.1 Introduction

Digital content is so easily distributed, and dissociated from the meta-
data that describes owner, terms and conditions of use etc. that copyright
infringement is rife. Secure perimeter schemes such as digital rights man-
agement (DRM) alleviate the problem in some cases [Chong et al., 2002]
but most (if not all) DRM systems are vulnerable to attacks. The raw
content can then be redistributed, severely damaging the interests of the
rights holder. Tracing traitor schemes trace leaks of content to the users
who can be identified, and ultimately whose behaviour can be recorded
as evidence. Many techniques exist to rediscover the identity and thence
the rights on the content, such as cryptography, digital fingerprinting, wa-
termarking etc. In this paper, we assume that users can be identified, and
we concern ourselves with the issue of gathering information on the user’s
behaviour.

Secure audit logging records the actions of a user on an item of content
and does so in a manner that allows some forms of tampering with the log
to be detected. We implement Schneier and Kelsey [1998] secure audit
logging protocol, using tamper-resistant hardware (TRH). For brevity in
the sequel, we refer to Schneier and Kelsey as “SK”.

An audit log is an important tool to detect and to comprehend dam-
ages of a computer or network system caused by intrusions, defects or
accidents. An audit log contains descriptions of noteworthy events. In our
DRM experiment audit logs are generated in the user’s personal computer
(PC). The PC is a hostile environment (untrusted domain) because of its
vulnerability against various malicious attacks. Therefore, the audit logs
require protection to ensure integrity.

SK involves two parties: an untrusted machine and a trusted machine.
The untrusted machine is not physically secure or sufficiently tamper-
resistant. SK makes the audit logs survive the adversary’s attacks. In other
words, SK renders audit logs impossible for an adversary to undetectably
view, forge and delete even after the untrusted machine is compromised by

144 EXPERIMENTS IN RIGHTS CONTROL

Secure Audit Logging 7.1. INTRODUCTION

the adversary. Furthermore, the audit logs record all the actions performed
by the adversary, including her attempts to compromise the untrusted ma-
chine.

The comment by SK that “the trusted machine may typically be thought
of as a server in a secure location, or implemented in various ways, which
includes a tamper-resistant token” has inspired us to use tamper-resistant
hardware (TRH) as the trusted machine for secure logging. The TRH (or
the trusted machine) we use is a Java iButton (http://www.ibutton.com)
for the following reasons:

1. The iButton contains a programmable tamper-evident real time clock.
The real time clock keeps time in 1

256
second increments.

2. The iButton supports efficient implementations of common crypto-
graphic algorithms.

3. The iButton version 1.1 provides up to 6kB non-volatile RAM, the
more expensive version 2.2 contains approximately 134kB non-volatile
RAM.

We use the iButton as a trusted device to aid in the audit log creation
in the manner proposed by SK. An iButton is too small to store a log of
any useful size in a cost effective manner: A typical PC contains 40GB
storage, i.e. around 300, 000 times more than the iButton.

Our DRM system has the usual Client/Server architecture. The Client
is a user with her PC, which represents the untrusted domain. The Server
is a trusted environment where content and license are stored. When the
Client accesses the content piecemeal from the Server (e.g. by stream-
ing), the latter is able to protect the content to some extent because the
Client’s actions can be monitored. However, when the Client downloads
the content to the PC’s non-volatile storage to accesses the content offline
(i.e. disconnected from the Server), the Server is not able to monitor the
Client’s behaviour. We propose using secure audit logging with TRH to
bring the security of offline DRM to the level of online DRM. The main
contributions of this paper are:

1. To implement SK embedded in several auxiliary protocols and with
the iButton, to support security of offline DRM.

EXPERIMENTS IN RIGHTS CONTROL 145

7.1. INTRODUCTION Secure Audit Logging

2. To evaluate the performance of the implementation; thus investigat-
ing whether the iButton can be used effectively.

3. To strengthen SK by making sure that some of its security assump-
tions are valid by virtue of using the iButton. We generate core
secrets and timestamps on the iButton instead of the untrusted PC.

To the best of our knowledge ours is the first attempt to implement SK
and the first endeavour to analyse the performance of SK in general, and
SK with iButton in particular.

A weakness of any system, which relies on TRH to coerce an untrusted
Client into specific behaviour, is that the user may simply sever the con-
nection between the Client and the TRH. We suggest a number of ways
to discourage the Client from such behaviour: (1) The Server is designed
so that it insists on the iButton being present to authenticate and authorize
the Client; (2) Organizational policy (e.g. in a corporate intranet) is used
to enforce the use of the iButton. In both cases users are provided an in-
centive to maintain communication with the iButton: no iButton means no
content.

The main problem with audit logging is that at some stage a dishonest
user may cheat by disabling the audit logging functionality of the DRM
application at the Client. She is able to deny any actions she has performed
during the offline period without evidences in the log.

At this point, the protection offered by DRM is weak on PCs but po-
tentially stronger on consumer electronics appliances. The reason for this
weakness is that PCs are open and programmable, whereas Consumer
electronics appliances are more tamper-resistant than PCs and therefore
somewhat more difficult to hack the DRM application. Therefore, the dis-
honest user will find it much harder to bypass a consumer electronic (CE)
device (the Client) audit logging mechanism. The audit logging mech-
anism is able to record all the user’s actions, including her attempts to
tamper with the audit logs.

The remainder of this paper is divided into sections as follows: Sec-
tion 7.2 describes related work. Section 7.3 explains SK using the iButton.
Section 7.4 discusses concisely the refinement we have made of SK. Sec-
tion 7.5 gives our performance analysis on the implementation. Finally,
section 7.6 concludes this paper also mentioning future work.

146 EXPERIMENTS IN RIGHTS CONTROL

Secure Audit Logging 7.2. RELATED WORK

7.2 Related Work

Shapiro and Vingralek [2001] survey several mechanisms to manage the
persistent state in a DRM system, including protected digital content, audit
trail, content usage counts and decryption keys. One of the mechanisms
they mention is secure audit logging. The two secure audit logging meth-
ods they cite are Bellare and Yee as well as Schneier and Kelsey.

Bellare and Yee [1997] (BY) propose a scheme to construct audit logs
which possess the forward integrity property: The keys are altered on a
regular basis by feeding different secret values to a family of pseudo-
random functions that generate the message authentication code (MAC)
over the entire log entries. If an adversary is able to compromise the cur-
rent MAC key, it is unfeasible for her to deceive the historical entries
generated because she is not able to fabricate the MAC keys for previous
log entries. “Forward integrity” can be viewed as an integrity analogue
of “forward secrecy” [Menezes et al., 2001]. A protocol possesses the
forward integrity property if a compromise of long-term keys does not
compromise the past keys. BY maintains the audit logs on untrusted ma-
chines.

Schneier and Kelsey [1998] (SK) uses a linear hash chain [Lamport,
1981] to link the entire audit log entries so that some forms of tampering
can be detected. The hash chain is constructed by hashing each previous
hash value of each log entry, concatenating with some other values. SK
provides a complete secure audit logging protocol, from the log creation to
log verification and viewing. A trusted machine is needed during log file
creation but not at every log entry creation. The untrusted machine needs
to communicate with the trusted machine from time to time to create new
log file and to validate log files. Similar to BY, SK shares the ”forward
integrity” property, but SK uses a collusion-resistant hash function to gen-
erate the keys for MACs generation of each log entry.

SK and BY share a security weakness. If an adversary is able to com-
promise the untrusted machine at time t, i.e. obtains the key at time t, she
is able to forge the log entry at time t. SK and BY are able to make illicit
deletion of audit logs detectable. However, they are not able to prevent
unauthorized removal of complete audit logs. Both SK and BY reckon
that the deletion of log entries cannot be prevented by using cryptographic

EXPERIMENTS IN RIGHTS CONTROL 147

7.3. THE PROTOCOLS Secure Audit Logging

methods, but only by using write-only hardware such as CD-ROM, or pa-
per printout.

7.3 The Protocols
Figure 7.1 illustrates the protocols in our secure audit logging method.
SK1 and SK2 are from SK. The others, P1 and P2 are our own protocols.

Verifier Server Client iButton

KiB PKC

SK
C

K
iB

PKiB

SK
iB

P1

SK1

P2

SK2

Figure 7.1: Overview of the secure audit logging method.

SK1 creates and closes an audit log. We focus on the technical details
of the protocol and refer the reader to Reference [Schneier and Kelsey,
1998] for the motivations behind the protocol and other details. We use
the notations listed in Reference [Schneier and Kelsey, 1998] to describe
our protocols.

SK2 verifies and displays the audit logs to the Verifier. We have
changed slightly the SK Verifier in that it does not store the Client’s log
file locally. The Verifier reads and verifies the log file remotely from the
Server. In other words, the log file is stored securely in the Server, and
the cryptographic processes are operated at the Server. Similar to SK1,
Reference [Schneier and Kelsey, 1998] elaborates this protocol.

148 EXPERIMENTS IN RIGHTS CONTROL

Secure Audit Logging 7.3. THE PROTOCOLS

The Client and the iButton own different sets of key pairs. PKC and
SKC are the public key and private key of the Client, respectively. PKiB

and SKiB are the public key and private key of the iButton, respectively.
The iButton and the Server share a secret key, KiB . The public/private
keys and the shared secret key are preloaded on the iButton before it is
deployed.

We have made some assumptions that we believe to be reasonable
while implementing the protocols. The main reason is to facilitate the
implementation of SK in the resource constrained iButton.

1. Without restricting generality, there is only one Verifier, one Server,
one Client and one iButton in the audit logging process. There is
only one audit log file created from the process.

2. If the iButton is removed from the iButton reader halfway through
an instruction then the log file is closed abnormally with a reason
stated in the log.

7.3.1 P1
P1 generates the authentication keys, Aj and to generate the timestamp,
dj for recording the log entry. We have refined SK1 by deciding that
the iButton should generate the keys and timestamps, as can be seen in
Figure 7.2.

We improve SK1 to the extent that A0, which represents the core secu-
rity of SK1, and the timestamps are generated in a trusted subdomain. A
fresh nonce, Nonce is generated and stored on the iButton. The purpose
of Nonce is to ensure the freshness of the initial authentication key. The
generated nonce is concatenated with the key, KiB . Thereby, the initial
authentication key cannot be generated by a malicious Client because she
does not know the Nonce and KiB .

We use the iButton real-time clock to generate the timestamps. We
encrypt the timestamps generated using the key, KiB shared between the
iButton and the Server. By doing so, the timestamps cannot be manufac-
tured by the Client (who does not have access to KiB).

The Client first requests an encrypted timestamp and an authentica-
tion key from the iButton for the current log entry. The iButton gener-

EXPERIMENTS IN RIGHTS CONTROL 149

7.3. THE PROTOCOLS Secure Audit Logging

Client iButton

Generates and remembers
timestamp, d

j
.

Encrypting
timestamp, E_K

iB
(d

j
).

Asks for
timestamp

and key

KiB

Receives
E_KiB(dj) and Aj

Two cases :-
Initially
Generates random
A

0
 = hash(K

iB
,Nonce) and stores A

0
Subsequently
Aj = hash(“incremental hash”, Aj-1)

1.

2.

3.

Figure 7.2: The P1 protocol for generating the initial authentication key A0 and
timestamp d from the iButton.

ates the timestamp using its real-time clock and encrypts the time stamp
with the iButton secret key, KiB. The iButton then remembers the first
timestamp, i.e. the timestamp for the initialisation log entry, with type
′′LogF ileInitializationType′′ and also the last timestamp, for the close
log entry, with type ′′NormalCloseType′′ or type ′′AbnormalCloseType′′.
We will come back to this in section 7.4.

The iButton then generates a random key, as the initial authentication
key, A0 if it is the first log entry the Client constructs; otherwise, the iBut-
ton hashes the previously existing authentication key, Aj−1 concatenated
with a message to generate the next authentication key, Aj . The iButton
stores the initial authentication key, A0 and current authentication key, Aj

for generating subsequent keys, Aj+1. After finishing the generations, the
iButton sends the encrypted timestamp and the authentication key back to
the Client.

7.3.2 P2

P2 synchronizes the iButton clock to the Server clock, which is a trusted
clock. P2 also sends the log file maintained at the Client and the corre-

150 EXPERIMENTS IN RIGHTS CONTROL

Secure Audit Logging 7.3. THE PROTOCOLS

sponding initial authentication key on the iButton to the Server, as shown
in Figure 7.3. The Server and the iButton share a secret symmetric key,
KiB, which is used to encrypt the data exchanges between the iButton and
the Server (and also the timestamps) from the Client.

Client iButton

Storing Nonce, do and
dj from P1

Synchronizing with t.

Encrypts the current
real time t, E_KiB(t).

Server
KiBKiB

SendingE_KiB(t).

SendingE_KiB(t).Asks for log.
Encrypting timestamps,
E_K

iB
(Nonce,d

0
,d

j
).

Sending
E_KiB(Nonce,d0,dj).

Sending I0..j,
E_KiB(Nonce,d0,dj).

Receiving I0..j,
E_K

iB
(Nonce,d

0
,d

j
).

Figure 7.3: The P2 protocol of synchronizing the iButton real-time clock and
sending audit logs to the Server.

The Server encrypts its current time with KiB, and sends the encrypted
time to the iButton for time synchronization. The iButton then decrypts
the message and adjusts its real time according to the received time. Once
the time is synchronized, the iButton sends back the accepted encrypted
time to the Server as an indication that the time is synchronized.

After the clock synchronization, the Server sends a request message to
the Client asking for the available log file. The Client forwards the request
to the iButton. The iButton sends the encrypted Nonce (the secret used to
generate the initial authentication key), as well as initialisation timestamp,
d0 and close timestamp, dj to the Server via the Client. At the same time,
the Client sends the available log file (corresponds to the IDlog of Nonce)
to the Server. In the DRM system, P2 is transparent to the Client.

EXPERIMENTS IN RIGHTS CONTROL 151

7.4. SK REFINEMENT Secure Audit Logging

7.4 SK Refinement
We have refined SK by introducing two auxiliary protocols, P1 and P2. P1
lets the trusted iButton instead of the untrusted client generate the authen-
tication keys and the timestamps. The iButton remembers the timestamps
for initialization and closing of the log. Additionally, the Client only pos-
sesses the encrypted timestamp from the iButton for audit logging, i.e. the
integrity and confidentiality of the timestamps are ensured. P2 enables
the iButton to transfer the encrypted initial authentication key and stored
timestamps using the shared secret key with the Server. In other words,
P2 is able to guarantee the integrity of the initial authentication key and
the timestamps during the transmitting process.

time

Client iButton

Remember time t
0
.Adversary views

a document.
Open log

A0, encrypted t0

Register event
A1, encrypted t1

Adversary turns
to another page.

Register event
A2, encrypted t2

Adversary turns
to another page.

Adversary steals key A4

Adversary closes
the document.

Close log
A11, encrypted t11

Remember time t
11

.

After 10

Figure 7.4: An adversary views a protected document and steals the key at time
t = 4, during the logging process.

As pointed out by Schneier and Kelsey [1998, 1999], there is a secu-
rity weakness in SK. If an adversary is able to compromise the Client by
getting hold of the key At, directly after it has been generated at time t, the

152 EXPERIMENTS IN RIGHTS CONTROL

Secure Audit Logging 7.4. SK REFINEMENT

adversary is able to falsify the log entry at time t. The adversary is also
able to create more counterfeit log entries and remove some log entries.
The Verifier is not able to detect the frauds because the adversary is able
to construct another “truthful” hash chain and MAC over the entire log
entries using the compromised authentication key.

In our refinement of SK, by using encrypted timestamps, we are able
to detect some of the aforementioned frauds. If the adversary wishes to
create more log entries, she has to obtain the cooperation of the iButton
to generate valid timestamps. The adversary does not have the right key,
so she cannot fabricate arbitrary timestamps herself. The adversary can
reuse genuine encrypted timestamps, but the verifier will notice missing
or duplicate time stamps, or time stamps that are presented out of order.
The adversary will also be caught truncating the log file when the time of
truncation does not match the time of the last transaction remembered by
the iButton. In case of tampering, the user can be held responsible for the
entire period between the log initialization time and close time.

We now present a concrete example of the difference between the orig-
inal SK and our version as shown in Figure 7.4. An adversary, who owns a
protected document and an associated license, starts the content renderer
on the Client. The first log entry, initialization log, is then generated.
Subsequent log entries are generated when she turns to other pages of the
document. At time t4, the adversary successfully steals the key A4. She
does not stop browsing the document, but keeps reading until time t10. She
closes the document at time t11 and so the log file is closed. She wants to
deny the fact that she has viewed the document from t4 till t10. Instead
the adversary wants the Verifier to believe that she has viewed the docu-
ment until t3. The adversary would wish to do so for example when she
is charged on a pay-per-view basis. The adversary thus removes the log
entries from t4 onwards, and creates a false close log entry using times-
tamp t4. As she possesses the key A4, she is able to construct a valid hash
chain and forge the MACs for this fraudulent log. In our version of SK,
the Verifier is able to detect the forgery because the iButton remembers
the log closing time (t11), which in the scenario above does not match t4.
The original SK protocol does not detect this situation.

Suppose that the Client cheats by using key A4 instead of A11 to close
the log file. The next time the client connects to the server to get new

EXPERIMENTS IN RIGHTS CONTROL 153

7.5. PERFORMANCE ANALYSIS Secure Audit Logging

content she will need the cooperation of the iButton to authenticate herself.
This gives the iButton the chance to present the latest key A11 to the server,
and so the cheating Client will be found out.

Using encrypted time stamps improves the security of the protocol but
weaknesses remain. For example if after a perfectly legitimate run of the
protocols the user starts viewing the content using an application that does
not log any actions, then this will not be noticed.

7.5 Performance Analysis

We are interested to know how the iButton affects the performance of the
Client during audit logging. This allows us to determine if the iButton is
practical for secure audit logging in a DRM system. We have run several
performance tests on the implementation. We have used a PC machine
Pentium III 800MHz with 256MB RAM as the Client machine for per-
forming the tests.

We have measured the time for creating different numbers of log en-
tries, from 1 to 10 on the Client. The graph is nearly a straight line. Gen-
erating 1 log entry takes approximately 1 minute.To explore why it takes
roughly 1 minute to generate only 1 log entry, we have measured the time
spent for performing cryptographic operations on the iButton. We believe
that the cryptographic operations are the main causes to the long time
taken for generating log entries.

We read the start time on the iButton right before the iButton starts
the calculation under investigation. We read the stop time on the iButton
once it stops the process. The time taken is the value of deducting the start
time from the stop time. The result is then transmitted back to the Client.
As only time with seconds-precision is available on the iButton (the soft-
ware does not provide access to the 1

256
second accuracy of the hardware

clock), we have run the process repeatedly on the iButton, dividing the
time measures by the number of repetition. We take the average value of
20 measurements as our final value using the standard deviation as error
margin.

We evaluate the time spent for encrypting/decrypting a message of
various size in bytes (from 8 to 128) using the 64-bit key DES algorithm on

154 EXPERIMENTS IN RIGHTS CONTROL

Secure Audit Logging 7.5. PERFORMANCE ANALYSIS

the iButton. We realize that the times are around 200 ms for large message
(size bigger than 128 bytes). We measure the time spent for hashing a
message of sizes range from 8 to 128 bytes using the SHA1 message digest
algorithm. The time spent for hashing 56 bytes is almost double the time
spent for hashing 48 bytes. This is due to the message padding to 64
bytes [NIST, 1995]. We also measure the time consumed for encrypting
a message of sizes from 8 bytes to 128 bytes, using 128-bit public key
of RSA algorithm; and decrypt using the corresponding private key on
the iButton. The RSA encryption takes averagely 25 seconds, while 22
seconds are needed for RSA decryption. We measure the time needed to
sign a message using SHA1 and RSA and to verify the signed message. It
takes 4 to 5 seconds to sign a message on the iButton, but it takes 5 to 6
seconds to verify the signature.

We do a back of the envelope calculation to confirm the measurement
on the log entry generation time we obtain. The iButton takes less than 1
second for generating the timestamp and authentication key, i.e. to com-
plete the protocol P1. The cryptographic operations on the iButton, as
mentioned earlier consume most time. RSA private key decryption and
public key encryption take approximately 24 seconds and 20 seconds, re-
spectively. DES encryption and decryption need about 0.1 second, respec-
tively. Signature generation and verification require roughly 5 seconds and
4 seconds respectively. These values are taken according to the size of the
message we have used.

To conclude our performance analysis, as it takes about 1 minute just
to generate 1 log entry, the iButton is not practical to be used in a system
that requires frequent logging. However, if the system only logs the main
events, such as playing a 4-minute song, reading an eBook, and other con-
tent access taking a longer time, we believe that the iButton is practical.
Note that in our system logging overlaps with the actual content rendering.

For logging frequent events, we believe that we could use iButton as
a bootstrap device for ensuring the trustworthiness of the first audit log
entry, and we could do the subsequent log entries creation for frequent
events without the presence of the iButton. This issue remains open for
future investigation.

EXPERIMENTS IN RIGHTS CONTROL 155

7.6. CONCLUSIONS AND FUTURE WORK Secure Audit Logging

7.6 Conclusions and Future Work
We propose using secure audit logging in a DRM system where the Client
is not permanently online. This allows the Server to obtain knowledge of
the Client’s behaviour during offline periods. We implement the Schneier
and Kelsey (SK) secure audit logging protocol, using tamper-resistant
hardware (an iButton) as the SK trusted machine.

The performance evaluation reveals that it takes about 1 minute for
generating 1 log entry. We reckon that this is not practical for a system
that requires frequent logging but feasible for a system that only needs to
log the main events such as playing a 4-minute song. To make the iButton
implementation also practical for recording more frequent events in future
work we intend to use the current implementation recursively: one entire
log on the untrusted PC would then correspond to one log entry that in-
volves the iButton. The performance could also be improved dramatically
using a more powerful iButton.

The main problem with all secure audit logging protocols is that if a
log entry at time t is compromised, then none of the log entries after time
t can be trusted. Our use of securely encrypted time stamps can solve
this problem in some (but not all) cases. We believe that we can improve
the security further by asking the iButton to do a little more work. This
remains open for future work.

156 EXPERIMENTS IN RIGHTS CONTROL

CHAPTER 8

LICENSE PROTECTION

License Protection with a Tamper-Resistant Hardware
Token7

Cheun Ngen Chong, Bin Ren, Jeroen Doumen, Sandro Etalle, Pieter
Hartel, and Ricardo Corin

Abstract Content protection mechanisms are intended to enforce the us-
age rights on the content. These usage rights are carried by a license.
Sometimes, a license even carries the key that is used to unlock the pro-
tected content. Unfortunately, license protection is difficult, yet it is im-
portant for digital rights management (DRM). Not many license protection
schemes are available, and most if not all are proprietary. In this paper, we
present a license protection scheme, which exploits tamper-resistant cryp-
tographic hardware. The confidentiality and integrity of the license or
parts thereof can be assured with our protection scheme. In addition, the
keys to unlock the protected content are always protected and stored se-
curely as part of the license. We verify secrecy and authentication aspects

7This chapter has been published in 5th Workshop on Information Security Applica-
tions (WISA 2004), volume 3325 of LNCS, 2004, pages 224–238, Springer-Verlag.

157

8.1. INTRODUCTION License Protection

of one of our protocols. We implement the scheme in a prototype to assess
the performance.

8.1 Introduction

In a digital rights management (DRM) system, we use a license to specify
the rights of a user on digital content [Chong et al., 2002]. For example,
a commercial software license could restrict the execution of the licensed
software to a particular number of uses. We must ensure the integrity of
this information, so that the usage rights can be enforced correctly.

A license often carries the key to unlock the protected content. There-
fore, we must ensure the confidentiality of this key, so that a dishonest user
cannot access the content without abiding by the license. Additionally, the
license can also carry metadata of the content, which may be as valuable
as the content itself because metadata is critical for efficient content man-
agement. For example, the URI of the film. To ensure the availability of
the film, the integrity of the URI must be protected.

Sometimes, we must ensure the confidentiality of some license infor-
mation so that it cannot be accessed by any unauthorized users. For in-
stance, a bank but not a content distributor can access a user’s payment
information specified on a license, e.g. credit card number. Therefore, the
license, just as the content, requires adequate protection.

Unfortunately, license protection does not attract as much attention
as content protection. There are only a few license protection schemes
available, and most if not all are proprietary. Our main security objectives
are to ensure confidentiality and integrity of a license or parts thereof, so
that keys and metadata can be protected.

In addition, we would like to enforce different usage rights on differ-
ent parts of the content. For instance, a patient record contains sensitive
information about a patient. We want to protect and share this information
by using different keys. The doctor is issued all the keys to access the en-
tire patient record, but the insurance agent is only issued the keys needed
to access insurance related information. To protect the patient record from
being misused, we need to protect these keys.

In this paper, we propose a license protection scheme using a key tree

158 EXPERIMENTS IN RIGHTS CONTROL

License Protection 8.2. SECURITY REQUIREMENTS

and a tamper-resistant hardware token with which we are able to achieve
the aforementioned objectives. A hardware token provides a tamper-resistant
environment for storage and for cryptographic operations; while a key tree
grants us the flexibility to protect and share a license and content.

Our contributions can be listed as follows:

1. We propose a license protection scheme using a key tree and a hard-
ware token, which is able to protect the license or parts thereof and
content parts.

2. We perform an analysis of our protection scheme to justify its secu-
rity properties.

3. We implement and evaluate the license protection scheme by using
some off-the-shelf software tools and a Java iButton.

We have applied our license protection scheme according to a number
of usage scenarios. To explain our approach, we choose a scenario of stock
price, where a provider (e.g. NYSE) issues a license that restricts access
of brokers (i.e., paid subscribers) and normal users to specific information
on stock prices.

The organization of the remainder of the paper is as follows: Sec-
tion 8.2 lists the security requirements. Section 8.3 briefly explains Li-
censeScript. Section 8.4 discusses our license protection scheme. Sec-
tion 8.5 explains our prototype implementation. Section 8.6 reports on a
performance evaluation of the prototype to justify the applicability. Sec-
tion 8.7 briefly explains some related work. Finally, section 8.8 concludes
and suggests future work.

8.2 Security Requirements
We assume that some of the system components can be trusted. This is
more or less realistic with consumer electronic (CE) devices, but much
less realistic when working on personal computers. In particular, we
assume that the application interprets a license correctly. We treat this
trusted part of the application as a reference monitor [Sandhu and Park,
2002]. For example, as soon as the license expires, the application stops

EXPERIMENTS IN RIGHTS CONTROL 159

8.3. LICENSESCRIPT LICENSE License Protection

rendering. However, a malicious application can still cheat by tampering
with the license. Therefore, we define the following requirements for our
license protection scheme:

Requirement 1 License Integrity: The application must verify the integrity
of the license when it accesses the license.

Requirement 2 Token Interaction: The application must interact with the
hardware token to access the license and content parts.

Requirement 3 Key Confidentiality: The storage keys for accessing the
license and content parts must be hidden from the application.

When these requirements are fulfilled, cheating by tampering with the
license will be difficult.

8.3 LicenseScript License
In this section, we discuss our licensing language, LicenseScript. The lan-
guage is based on multiset rewriting [Banâtre et al., 2001] and logic pro-
gramming [Lloyd, 1987]. The reader may refer to our previous work [Chong
et al., 2003a] for more detailed information.

A license has the following form:

license(Content,Clauses,Bindings)

Here, Content is (a link to) the content to be protected; Clauses
is a Prolog program that decides if the operations performed are allowed
or forbidden; and Bindings is a list of attributes that carry the status of
the license and metadata of the content.

A clause has the following form:

Head :- Body_1,Body_2,...,Body_n.

Here, Head is the name and arguments of the clause, and the conjunc-
tion of Body 1 up to Body n is the body of the clause.

We use stock price scenario (as mentioned in section 8.1) for illus-
tration. Figure 8.1 is an example of a LicenseScript license that allows
a broker to view a stock price for 10 times. The license also allows the

160 EXPERIMENTS IN RIGHTS CONTROL

License Protection 8.4. LICENSE PROTECTION SCHEME

provider to reset the number of times the stock price is viewed. Finally,
the provider can update the stock price.

In Figure 8.1, stock price is the link to the stock price; get
value(X, Y, Z) gets the value of the binding Y from the binding list
X and unifies it with the variable Z; set value(V, X, Y, Z) sets
the value of the binding X from the binding list V with the value Y and
stores the binding into the binding list Z; is member(X,Y) checks if
element X is a member of set Y; get curr time(X) gets the current
time and stores it in X (primitives for other useful environmental data exist
as well); viewed is the binding that stores the number of times the stock
price has been viewed; maxviews stores the maximum number of times
the stock price can be viewed; updated records the time that stock
price is updated; subjects is the access control list of subjects that
can view stock price.

In all clauses, S represents the subject making the query, B1 is the
current set of bindings and B2 is the set of bindings resulting from a suc-
cessful query. A failed query does not update the bindings. Clauses are
triggered via external actions, for example if the broker presses the view
button on the user interface, the canview clause is activated, with the ap-
propriate settings for S (i.e., broker) and the bindings B1 and B2.

8.4 License Protection Scheme

In this section, we introduce our license protection scheme. We use the
architecture shown in Figure 8.3.

Four components are involved: the application, reference monitor, to-
ken, and provider. The application is a piece of software that interacts
with the token, and which is used to access the license and the associated
content. The reference monitor, which is a trusted part of the application,
coordinates the actions of the application and the license. Each of these
components has its own public/private key pair.

Two protocols support the communication between the components.
Protocol A is used to send a protected license to the application from the
provider. The provider generates the protected license and depending on
its business model, decides which part of the license needs to be protected.

EXPERIMENTS IN RIGHTS CONTROL 161

8.4. LICENSE PROTECTION SCHEME License Protection

01)license(stock_price,
02)[(canreset(S,B1,B2):-
03) S==provider,
04) set_value(B1,viewed,0,B2)),
05) (canupdate(S,B1,B2) :-
06) S==provider,
07) get_curr_time(T),
08) set_value(B1,updated,T,B2)),
09) (canview(S,B1,B2) :-
10) get_value(B1,subjects,Ss),
11) is_member(S,Ss),
12) get_value(B1,viewed,X),
13) get_value(B1,maxviews,Y),
14) X <= Y, X = X + 1,
15) set_value(B1,viewed,X,B2))],
16)[maxviews=10,
17) viewed=0,
18) updated=01012004,
19) subjects=[broker]])

Figure 8.1: A license that restricts a
broker to access a stock price under
10 times.

license(stock_price,
[(canreset(S,B1,B2):-

cipher("CJ...", skey1)),
(canupdate(S,B1,B2) :-

cipher("XY...", skey3)),
(canview(S,B1,B2) :-

cipher("AB...", skey4))],
[maxviews=cipher("12...",skey4),
viewed=cipher("AC...",skey4),
updated=01012004,
skey1=cipher("89...",rootkey),
skey2=cipher("aC...",rootkey),
skey3=cipher("CC...",skey1),
skey4=cipher("KL...",skey2),
mac=cipher("XA...",rootkey),
subjects=[(provider,rootkey),

(broker,skey2),
(alice,skey4)]])

Figure 8.2: Protected license of Fig-
ure 8.1, storing the storage keys and
the MAC.

Protocol B is used when the application starts using the content, and
when the reference monitor interprets the protected license. We will elab-
orate these protocols later in section 8.4.3. To use the license, the applica-
tion must interact with the token and the reference monitor.

We will explain our scheme as follows: Firstly, we look at protected
storage mechanisms, which have inspired our license protection scheme
in section 8.4.1. Secondly, we show the structure of the protected license
in section 8.4.2. Lastly, we illustrate the protection scheme protocols that
we have developed in section 8.4.3.

8.4.1 Protected Storage Mechanisms

Our license protection scheme is a protected storage mechanism. Pro-
tected storage is defined by Pearson et al. [2003] as follows:

Protected storage is a service to the host platform in which the
trusted platform module (TPM) acts as a portal to confidential
data stored on an arbitrary, unprotected storage media.

162 EXPERIMENTS IN RIGHTS CONTROL

License Protection 8.4. LICENSE PROTECTION SCHEME

Application

Reference
Monitor

Token

Provider

Protocol B

Protocol A

Public/Private
Key Pair

Figure 8.3: Overall license protection architecture.

Here, the TPM is a tamper-resistant cryptographic hardware module
that is permanently embedded in a computer. The TPM can provide se-
cure storage for keys and other sensitive information and it can perform
cryptographic operations. Our license protection scheme uses an external
hardware token instead of the TPM because this allows user the freedom
to move licenses and content between machines.

In this paper, we use protected storage in the form of a key tree. This
is a mechanism that has been used in secure group communication for key
distribution and management [Goshi and Ladner, 2003].

Figure 8.4 provides an example of a key tree. A child node is encrypted
using the storage key of the parent node. The root key is the “master key”
for the whole tree. If say, skey1 is needed to decrypt data1, the former
will be decrypted using the rootkey. Then, data1 can be decrypted
with skey1.

For optimal performance, we use symmetric keys for the root key and
the storage keys. The root key is stored on the token when it is issued and
never leaves the token. It is sent to the user physically with the token. This
root key is the secret key shared between the token and the provider. All
decryptions take place on the hardware token for maximum security.

However, when sharing license information with another user, an ac-
tual storage key (which has become the root key for a sub-tree) must be

EXPERIMENTS IN RIGHTS CONTROL 163

8.4. LICENSE PROTECTION SCHEME License Protection

rootkey

skey2skey1

skey4data1

data4

data3

skey3

data2

Figure 8.4: An example of key tree.

transferred to the user’s token. For instance, we can allow a user to only
access data3 and data4 by transferring the actual storage key skey2
to the user’s token. The process of transferring this storage key to another
user’s token falls outside the scope of this paper. However, we believe
it can be achieved by using the TPM maintenance mechanism [Pearson
et al., 2003], which is intended to transfer a storage key from a TPM to
another TPM securely. In addition, we can exploit a secure transfer mech-
anism, such as the mechanism proposed by Atallah and Li [2003]. This
deserves further study.

We can selectively deploy the information of the license with other
entities by using the key tree. For instance, we can share the information
of the license encrypted by skey3 and hide the other information from
another user, by using the key skey2 as the root key for that user.

8.4.2 Protected License

By using a key tree, we can protect the license from Figure 8.1, as shown
in Figure 8.2. Here, cipher(X,Y) is a predicate that stores the en-
crypted value X (which looks meaningless to human eyes) with the key
Y.

164 EXPERIMENTS IN RIGHTS CONTROL

License Protection 8.4. LICENSE PROTECTION SCHEME

Several additional bindings are needed to store the encrypted keys.
For example, skey1 is the encrypted key used to encrypt lines 03–04 of
Figure 8.1, shown as "CJ..." in line 03 of Figure 8.2. The length of
"CJ..." is the same as the original text shown in lines 03–04. We use
the binding mac (line 15) to store the message authentication code, i.e.,
"XA..." of the license, which can be verified by using the rootkey.
The mac can ensure the integrity of the entire license.

The provider has the rootkey (on her token). The provider
can access all the encrypted data in the license. Therefore, the provider
can execute clause canreset, which resets the value of the binding
viewed; clause canview, which views the content of stock price;
and clause canupdate, which updates the content of stock price.
On the other hand, the broker can only execute the clause canview,
because her token only has the actual key skey2.

In addition, we use the keys in this license to protect some information
(i.e., parts) of the stock price. The license only allows an authorized
user (with the correct key) to access these protected parts. In Figure 8.2,
broker, who is a paid subscriber, can access the stock price infor-
mation that is encrypted with key skey2 and skey4. The user alice,
who is not a paid subscriber can access less information, which is en-
crypted with key skey4, of the stock price.

8.4.3 Protocols

In this section, we describe the protocols of our protection scheme: Proto-
col A (for transmitting the license) and Protocol B (for using the license).
For the reader’s convenience, we list the notation we use to describe the
protocols in Table 8.1.

Protocol A (Figure 8.5) requires interaction between the hardware to-
ken, the application, and the license provider. Its two main objectives are
: (1) to send the protected license to the application; and (2) to send the
public key of the application to the token. The application’s public key
will certify the trustworthiness of the application when the license is used.

EXPERIMENTS IN RIGHTS CONTROL 165

8.4. LICENSE PROTECTION SCHEME License Protection

Symbol Meaning
A Application
R Reference Monitor (the trusted part of A)
T Hardware token
P Provider
D Data, i.e., license clause/binding or content
{X, Y } Concatenation of X and Y
{· · · }K Message is encrypted by key K
Kst Storage key
Kss Session key
K(X,Y) Shared secret key of X and Y
K+

eX , K−

eX Public and private key of X for encryption
K+

sX , K−

sX Public and private key of X for signature
S(M)K−

sX

Signature of M with K−

sX

MAC(M, K) MAC of message M with K
Lic License
Key List of encrypted storage keys

Table 8.1: The notation.

A1. A → T : {A,P, “name”}

A2. T → A : {N,MAC(N,K(P,T)), T, A, P, “name”}K+

eP

A3. A → P : {A, {N,MAC(N,K(P,T)), T, A, P, “name”}K+

eP

}

A4. P → A : {Lic, {N + 1, A,K+
eA}K+

eT

}

A5. A → T : {N + 1, A,K+
eA}K+

eT

Figure 8.5: Protocol A – The hardware token, the application and the license
provider interact during the transmission of the protected license and the public
key of the application.

166 EXPERIMENTS IN RIGHTS CONTROL

License Protection 8.4. LICENSE PROTECTION SCHEME

A1 Application (A) asks Token (T) to get the desired license (identified
by “name”) from Provider (P). T must recognize P .

A2 T generates a fresh nonce N , a MAC of N (using the secret key
shared with P), K(P,T), concatenates N , MAC(N, K(P,T)) and iden-
tity T to the message received from A, encrypts the result with
Provider’s public key K+

eP , and sends this to A. The fresh nonce is
necessary to prevent a replay attack. The secrecy of the message can
be assured by encrypting it with K+

eP . The authenticity of the nonce
(i.e., that it was produced by T) is guaranteed by MAC(N, K(P,T)).
Therefore, a malicious application cannot fabricate the message of
step A2 without help of the token.

A3 A sends its identity and the received message from T to P .

A4 If P can decrypt the received message, P is implicitly authenticated
by T . P increments N , concatenates N + 1 with A’s public key
K+

eA and encrypts the result with T ’s public key K+
eT . P sends this

message and the protected license Lic to A.

A5 A forwards the encrypted message to T and stores Lic. The license
can be stored securely because its content is protected by a key tree.

Protocol B (Figure 8.6) After Protocol A has finished, the application
has the protected license. Each time the license is used, Protocol B is run.

As stated before, the reference monitor is assumed to be the trusted
part of the application. We trust the reference monitor in the sense that it
will correctly interpret each license. Also, we assume that the token has
obtained, and trusts, the public key of the reference monitor initially.

The steps of Protocol B are:

B1 Application (A) wants to access the license. It initiates the interac-
tion by sending to Token (T) its identity A, the license Lic and the
MAC value of the license, MAC(Lic, K(P,T)). If validation fails, T
terminates the interaction and records the event.

B2 T verifies the integrity of Lic. If the integrity is violated, T ter-
minates the interaction with A, and A cannot access the content.

EXPERIMENTS IN RIGHTS CONTROL 167

8.4. LICENSE PROTECTION SCHEME License Protection

B1. A → T : {A,Lic,MAC(Lic,K(P,T))}

B2. T → A : {Kss1
}K+

eA

B3. A → T : {Key, {D}Kst
, “param”}Kss1

B4. T → R : {{Lic,D, S(D)K−

sT

}Kss2
, {Kss1

,Kss2
}K+

eR

}

B5. R → A : {D}Kss1

B6. A → R : {D′}Kss1

B7. R → T : {D′}Kss2

B8. T → A : {{D′}Kst
}Kss1

B9. A → T : {Lic′}Kss1

B10. T → A : {MAC(Lic′,K(P,T))}Kss1

Figure 8.6: Protocol B – The application interacts with the token for using the
license.

We use secure audit logging to record this incident [Chong et al.,
2003e]. If the integrity is validated, T acknowledges A with a ran-
domly generated fresh session key Kss, encrypted with A’s public
key K+

eA. Implicitly, the application is authenticated if the applica-
tion can read this message using its private key.

B3 A retrieves a list of encrypted storage keys Key needed for the re-
quired data DKst

, and sends it to T . The parameter “param” is used
to identify the type of D, i.e., if D is a clause, “param” is the name
of the clause. This message is encrypted with the session key Kss

to ensure the authenticity of the session.

B4 Before sending the decrypted data D, two cases are considered:

B4.1 If D is a license binding, T checks it against the previously
stored value to assure that D has not been tampered with. If
the check fails, the token terminates the transaction. Other-
wise, T performs application-specific updates on the binding
value stored on the token. For instance, the value of binding
played times is incremented. In any case, we log the bind-

168 EXPERIMENTS IN RIGHTS CONTROL

License Protection 8.4. LICENSE PROTECTION SCHEME

ing values so that when T and A re-connect to P (Protocol A)
say, for a new license or content, T sends P the stored bind-
ing values, so that P can check if the user has cheated [Chong
et al., 2002]. If D is used for the first time, T will store it (T
can trust the integrity of D at the first time because D is always
encrypted with a storage key).

B4.2 If D is a license clause or a content part, no checking is done
due to the limited resources of the token.

Then, T sends D and its signature S(D)K−

sT

as well as the license
Lic encrypted with a new session key Kss2

to the reference monitor
R. The new session key is encrypted with the public key of R, i.e.,
K+

eR.

B5 R verifies S(D)K−

sT

before interpreting the data D. Then, R sends
D to A, encrypted with the session key Kss1

. The encryption with
Kss1

is to ensure the authenticity of the session.

B6 After A has used and updated D (i.e., D′ is generated), A sends D′

to R.

B7 R checks if D′ was updated correctly. If so, R sends D′ to T en-
crypted with their shared session key Kss2

.

B8 T replies to A with the encrypted D′, i.e. {D′}Kst
. T encrypts it

with the session key Kss1
to ensure the authenticity of the session.

B9 A new license Lic′ is re-constructed by A. A asks T to regenerate a
new MAC value for the updated license Lic′.

B10 T sends the new MAC(Lic′, K(P,T)) to A to finish the final re-
construction of Lic′.

Steps B3 to B8 may be repeated in a session for different types of data
(i.e., license clause, binding or content part) during the use of the license
and content.

This completes the description of the protocols.

EXPERIMENTS IN RIGHTS CONTROL 169

8.4. LICENSE PROTECTION SCHEME License Protection

8.4.4 Formal Protocol Verification
We have used the protocol verifier CoProVe [Corin and Etalle, 2002] to
verify Protocol A. Basically, what we needed to verify is that a malicious
application would not be able to obtain the license without the correct in-
tervention of the token. It is well-known that design of cryptographic pro-
tocols is rather error-prone, and that a great deal of published protocols has
later been shown to contain errors prejudicing their safety. CoProVe helps
at finding possible attacks and at proving that – under certain conditions –
a protocol is attack-free. CoProVe works by taking as input a specification
of the protocol and a system scenario describing the roles involved in the
protocol – in our case token, application and provider of Protocol A – and
by analysing all possible interleavings in presence of a malicious intruder.

We adopt two reasonable assumptions to keep our scenario simple yet
expressive:

1. The token knows the genuine provider. It is a practical assumption
because the token is dispatched by the provider.

2. The provider knows the genuine application. It is also practical be-
cause the provider keeps a list of authorized applications that can
access the license.

Specifically, we have verified the following properties:

1. Secrecy: A fresh nonce must only be known by the token and the
genuine provider. This is to prevent replay attacks.

2. Authentication: The malicious application and provider cannot im-
personate the genuine ones. Thereby, the malicious application can-
not impersonate a genuine one to decoy the token. We tested that a
malicious application could not impersonate the token.

To carry out the verification we had to set up a finite-state scenario
(consisting of a finite number of parallel sessions); this is the standard lim-
itation of model-checking approach to verification: while we have checked
scenarios with two parallel sessions (we are going to carry out tests with
3 parallel sessions as well) it is possible – though unlikely – that hid-
den flaws are revealed only by analyzing scenarios with a higher number

170 EXPERIMENTS IN RIGHTS CONTROL

License Protection 8.5. PROTOTYPE

of parallel sessions. In the Appendix we report the source code used to
check the secrecy of the nonce with two parallel sessions.

8.4.5 Security Analysis

In this section, we review the requirements of section 8.2 corresponding
to our license protection scheme.

Requirement 1 is satisfied by using a message authentication code.
The verification of the MAC value is performed on the token with the root
key stored on the token (in Protocol B step B1). Therefore, we can en-
sure the correctness of the MAC verification because the secret key never
leaves the token.

Requirement 2 is fulfilled if different parts of the content are encrypted
by using different keys stored on the license (in Protocol B step B3).
Therefore, the application must interact with the token continuously as
long as the application accesses the content and license. Our protection
scheme is aimed for content is short-lived, i.e., the value of the content is
reduced after a short period of time. For instance, stock price. Therefore,
once the content has been encrypted and presumably saved in the clear,
we do not insist on communication with the token anymore.

Requirement 3 is satisfied. The keys stored on the license are en-
crypted. The decryption operations (on the keys, license clauses, bind-
ings, and content parts) are performed on the token (in Protocol B step
B4). However, during sharing, an actual storage key must be transferred
from one token to another. This process is presumed secure by using some
available mechanisms.

8.5 Prototype

In this section, we discuss a prototype implementation of our license pro-
tection scheme. The objective is to establish the applicability, and at the
same time to conduct some performance evaluation. The prototype is built
on a platform of Intel Pentium 4, 256 Mbytes of RAM, and a serial port
connection with the iButton version 2.2.

EXPERIMENTS IN RIGHTS CONTROL 171

8.5. PROTOTYPE License Protection

Token
(Java iButton)

Provider
(Java)

Socket
Serial
Port ECLiPSe

(Prolog)

Meta-Interpreter

Rewrite Rules

Application
(Java)

LicenseScript Interpreter

Figure 8.7: The architecture and components of the reference implementation.

We use off-the-shelf software tools to implement the components of
our prototype, as shown in Figure 8.7:

1. LicenseScript License Interpreter, which is responsible for inter-
preting and calculating licenses. It acts as a reference monitor. We
have used the LicenseScript Interpreter from our previous work [Chong
et al., 2005] based on:

(a) ECLiPSe: To execute the Prolog code retrieved from the Li-
censeScript licenses.

(b) Meta-interpreter: To retrieve the clauses and binding values
from the licenses and to send these to the ECLiPSe Prolog in-
terpreter.

(c) Rewrite Rules: To interpret the rights operations performed by
the users via the application, for instance, play, copy, etc.

2. Application, which is used to access the license and the associated
content, while interacting with the token. This is written in Java, us-
ing iB-IDE API, Java Cryptography Extension (JCE), and JavaCard
Framework.

3. Token, which is a Java iButton version 2.2. It has a higher physi-
cal security than a normal smart card because the chip is physically
protected by a stainless steel cover, and it supports common crypto-
graphic algorithms.

172 EXPERIMENTS IN RIGHTS CONTROL

License Protection 8.6. PERFORMANCE EVALUATION

4. Provider, which provides the protected license and sends it to the
client via a socket connection. This is written in Java using JCE and
Java.net.

After implementing the prototype, we performed several performance
evaluations of the prototype.

8.6 Performance Evaluation

To verify the practicability of our license protection scheme, we perform
several tests on our prototype.

From our previous experience, we know that the cryptographic oper-
ations on the iButton are slow [Chong et al., 2003e]. As it is used more
frequently than Protocol A, we choose to evaluate the performance of Pro-
tocol B, in particular the two operations that involve the iButton: (1) de-
cryption of keys and data (includes license clause, binding and content
part) on different level of a key tree, on the iButton (section 8.6.1), and
(2) reconstruction of the license, which involves encrypting the data and
generating a message authentication code (section 8.6.2).

8.6.1 Test 1: Level of the Key Tree

The depth of a key tree influences the performance of our license protec-
tion scheme. For instance, to retrieve a license binding value, which is
encrypted with a storage key at level 10 of the key tree, the token has to
perform 10 steps of symmetric decryption (including the step to decrypt
the encrypted binding value).

In this test, we measure the decryption time required at various levels,
i.e., from level 2 to 10 inclusively (level 1 is the root key). The final result
obtained for each level is the average of 5 repeated measurements. We run
the test as shown in Figure 8.8.

The size of the data is less than 128 bytes. We found that it takes
roughly 0.2 second for DES decryption (with a 56-bit key) on the iButton,
which is consistent with the finding of our previous work [Chong et al.,
2003e].

EXPERIMENTS IN RIGHTS CONTROL 173

8.6. PERFORMANCE EVALUATION License Protection

iButton Application

Time

Encrypted Data

Decrypted Data

Figure 8.8: The procedure for measur-
ing the time needed to perform data
decryption at different levels of the
key tree.

iButton Application

Updated value

Encrypted updated value

Asks new license MAC

New license MAC

1

3

4

5

7

8

2

6

Time

Figure 8.9: The procedure for measur-
ing the time needed to perform data
re-encryption on the token and recon-
struction license on the application, at
different levels on the key tree.

We derive a least square fitting (LSQ-Fit) formula to express our result
of measurements:

t = 0.06 ± 0.02 + (111 ± 3) × l (8.1)

Here, t is the time in milliseconds required to perform DES decryption on
the token for level l on the key tree. l > 1 because level 1 is the root key.

The first conclusion is that the depth of the key tree should be kept as
low as possible. From Equation 8.1, it takes approximately 1.22 seconds
to decrypt a data (of size less than 128 bytes) at level 10 of the key tree.
This will cause a delay to the system, which is noticeable to the user.

8.6.2 Test 2: License Reconstruction
After the data is used and updated, we also need to re-encrypt the data on
the token, reconstruct the license on the application and generate a new
MAC for the updated license on the token.

We run a test, as shown in Figure 8.9. We use the same data size as
less than 128 bytes to perform our tests, and we have run the same test for

174 EXPERIMENTS IN RIGHTS CONTROL

License Protection 8.6. PERFORMANCE EVALUATION

the same data 5 times. The final result is the average value of these 5 tests.
We use an LSQ-fit formula to express our result:

t = 2256 ± 80 + (2.56 ± 0.28) × l (8.2)

Here, t is the time in milliseconds required to reconstruct the license for
updated level l. The time required to reconstruct the license does not
depend on the depth of the data in the key tree because only one DES
encryption is performed on the iButton. Therefore, the time required to
reconstruct the license for arbitrary updated level in the key tree is ap-
proximately 2.25 seconds.

We decompose the procedure of test into 8 parts, as shown in Fig-
ure 8.9, and test the time required for each part:

Parts 1, 3, 5, and 7 Application transmits less than 128 bytes of the data
to the iButton and vice versa. We have run a test of the data trans-
fer rate. It takes about 0.2 second to transmit less than 128 bytes
of data, as shown in Figure 8.10. Our data size is about 100 bytes.
Therefore, in total the communication between the iButton and the
application takes 0.8 second. Therefore, to update and reconstruct
a license, it takes in total approximately 2.25 seconds, which is con-
sistent with the overall measurement reported at the beginning of
this section.

The graph shown in Figure 8.10 leaps drastically at around 120
bytes of data size. This is due to the iB-IDE API. When the data
is over 120 bytes, it will be split into chunks for transfer, which
causes more transmit time.

Part 2 This corresponds to Protocol B step B5. The iButton needs to
perform a DES decryption with a 56-bit session key on the message
to retrieve the updated value, which takes about 0.2 second [Chong
et al., 2003e]. Then, the iButton encrypts the updated value with
56-bit storage key, and then with the 56-bit session key. Therefore,
this process takes in total 0.6 second.

Part 4 The application reconstructs the license with the encrypted and
updated license data. This takes less than 0.05 second.

EXPERIMENTS IN RIGHTS CONTROL 175

8.6. PERFORMANCE EVALUATION License Protection

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 50 100 150 200 250

Ti
m

e
(s

)

Data (bytes)

Figure 8.10: The data transmission time from the application to iButton.

Part 6 This corresponds to Protocol B step B7. Similar to step 2, it takes
0.2 second to decrypt an encrypted message with the session key.
The iButton generates a MAC for the new license. The iButton
needs about 0.15 second to generate a hash of the data size less than
128 bytes [Chong et al., 2003e]. The iButton needs 0.2 second to
generate the MAC with the root key (DES encryption of the hash).
Lastly, the iButton needs 0.2 second to encrypt the MAC with the
session key. Therefore, this step takes in total 0.75 second.

Part 8 The Application reconstructs the license by embedding the new
MAC. Similar to 4, the application takes less than 0.05 second to
finish this final step of license reconstruction.

To conclude, the performance of the license protection scheme is ac-
ceptable from the user’s perspective, if the data is small (less than 128
bytes). We may need a USB interface and a bigger token memory to han-
dle bigger data. This remains for future investigation.

176 EXPERIMENTS IN RIGHTS CONTROL

License Protection 8.7. RELATED WORK

8.7 Related Work

In this section, we briefly discuss some related work. We investigate some
XML documents security that XML-based rights expression languages ex-
ploit. We also discuss some commercial license protection mechanisms by
using hardware tokens.

Damiani et al. [2000b] define and implement an authorization model
for regulating access to XML documents. They exploit the capabilities of
XML, and define an XML markup for a set of security elements describ-
ing the protection requirements of XML documents. Bertino et al. [1999]
share the objective of Damiani et al but they focus on controlling the data
access and dissemination of XML documents when there are XML doc-
uments exchanges between two parties. They discuss main protection re-
quirements posed by XML documents and present a set of authorization
and dissemination policies to achieve the aforementioned purpose.

As far as we are aware, the listed authorization models only propose
the representation of the protected XML documents, e.g. new structure
with new set of XML markups, etc. There is no protection operation men-
tioned how these protected XML documents are produced and accessed.

Several commercial proprietary protection schemes using hardware
tokens are available. We are only able to scratch the surface of these
mechanisms by studying their white papers. Most of them, e.g. Sospita
(http://www.sospita.com/) and Wibu (http://www.wibu.com/) aim
to protect a software code by executing parts of the code on their propri-
etary hardware tokens. They can lock this part of the software code unless
the user pays for it. These protection schemes also assume that (parts of)
the application that interfaces with the tokens are trusted.

Basically, protecting a license is only a secondary task in their scheme.
Different from LicenseScript, their licenses do not have a rich structure
to express complex usage scenarios. In addition, our license protection
scheme, because of a key tree, allows flexibility in sharing a protected
license and content with other users.

EXPERIMENTS IN RIGHTS CONTROL 177

8.8. CONCLUSIONS AND FUTURE WORK License Protection

8.8 Conclusions and Future Work

A license is an important element of digital rights management (DRM)
because it: (1) specifies a user’s rights on a digital content, (2) carries
a content key, and (3) describes metadata of the content. Therefore, we
propose a license protection scheme based on a tamper-resistant hardware
token and a key tree. The key tree provides flexibility and the hardware
token provides tamper-resistance. We apply our license protection scheme
to LicenseScript licenses. We analyze the protection scheme in terms of
security with respect to some common security assumptions. We also
perform a formal protocol verification using CoProVe.

We implement a prototype by using the Java iButton. To justify the
practicability, we perform several measurement on the prototype. We con-
clude that the protection scheme is practical for a shallow key tree and
small license size. We will extend our protection scheme for protecting
fancy media, e.g. music or film. We will also use a USB connection for
the iButton to improve the performance. Our scheme is intended for the
business model of “one token to one provider” due to the limited resources
of the token. However, we can extend our scheme to support “one token to
many providers” – by using the public key of the token, we can generate
a new shared secret key for a new provider. This remains as our future
work.

Appendix: CoProVe for Protocol A
% Specification of Protocol A:

% specification for application role
application(A,T,P,N,L,K,[

send([A,P]),
recv([N, [N+K, [A, [P,T]]]]*pk(P)),
send([A, [N, [N+K, [A, [P,T]]]]*pk(P)]),
recv([L, [sha(N), [A,pk(A)]]*pk(T)]),
send([sha(N), [A,pk(A)]]*pk(T))

]).

% specification of token role
token(A,T,P,N,K,[

recv([A,P]),
send([N, [N+K, [A, [P,T]]]]*pk(P)),
recv([sha(N), [A,pk(A)]]*pk(T))

178 EXPERIMENTS IN RIGHTS CONTROL

License Protection 8.8. CONCLUSIONS AND FUTURE WORK

]).

% specification of the provider
provider(A,T,P,N,L,K,[

recv([A, [N, [N+K, [A, [P,T]]]]*pk(P)]),
send([L, [sha(N), [A,pk(A)]]*pk(T)])

]).

% secrecy check (singleton role)
secrecy(N, [recv(N)]).

%scenario to check the secrecy of nonce with 2 sessions
scenario([[a1,Init1], % application

[a2,Init2], % application
[t1,Resp1], % token
[t2,Resp2], % token
[p1,Resp3], % provider
[p2,Resp4], % provider
[sec,Secr1]]) :-

application(a,_,p,_,_,_,Init1),
application(m,_,p,_,_,_,Init2),
token(_,t,p,n1,k,Resp1), % token knows genuine provider
token(_,t,p,n2,k,Resp2),
provider(_,t,p,_,l1,_,Resp3), % provider knows token
provider(_,t,p,_,l2,_,Resp4),
secrecy(n1, Secr1).

initial_intruder_knowledge([t,a,m,p]).
has_to_finish([sec]).

EXPERIMENTS IN RIGHTS CONTROL 179

CHAPTER 9

STREAMING AUDIO PROTECTION

StreamTo: Streaming Content using a Tamper-Resistant
Token

Jieyin Cheng, Cheun Ngen Chong, Jeroen Doumen, Sandro Etalle, Pieter
Hartel, and Stefan Nikolaus

Abstract StreamTo uses tamper resistant hardware tokens to generate
the key stream needed to decrypt encrypted streaming music. The combi-
nation of a hardware token and steaming media effectively brings tried and
tested PayTV technology to the Internet. We provide a security analysis
and present two prototype implementations with a performance assess-
ment, showing that the system is both effective and efficient.

9.1 Introduction
To enforce usage rights and to prevent copyright violations, digital con-
tent needs to be protected. As shown in Figure 9.1, content protection
has three objectives [Judge and Ammar, 2003]: (1) protected distribution,
which protects content when it is accessed online by a content renderer,

181

9.1. INTRODUCTION Streaming Audio Protection

e.g. streaming mechanism; (2) protected storage, which protects content
while being stored locally, e.g. safe disc; and (3) protected output, which
protects content after it is being rendered by a content renderer at a content
output (e.g. a sound card), e.g. Microsoft Secure Audio Path (SAP).

Content
Provider

Content
Renderer

Content
Output

Protected
Distribution

Protected
Storage Protected

Output

Figure 9.1: Three phases of content protection.

Content protection is difficult on a personal computer (PC) because
most of the PC components (i.e., content renderer and content output)
are open (i.e. programmable) and thus not trustworthy. When protected
content is being used locally on a PC, an attacker might be able to retrieve
the actual content by circumventing the protection mechanism [Greene,
2001].

However, if content is stored on a server while being used via a stream-
ing mechanism (SM), the security of the content can be guaranteed to a
certain extent because the entire content is not sent to the user’s PC di-
rectly but piecemeal as a stream of packets [Holankar and Stamp, 2004].
This stream of packets is interpreted and rendered at the user’s PC as they
arrive. Therefore, SM helps to achieve protected distribution of content,
provided that the stream cannot be captured easily.

Compared to a PC, a consumer electronic (CE) device is relatively
more trustworthy because its components can be manufactured compli-
ant and non- programmable [Eskicioglu and Delp, 2001]. Therefore, it
is more difficult to circumvent the protection mechanisms applied to CE
devices. A common example of such a content protection mechanism is
the Conditional Access System (CAS) [Kravitz and Goldschlag, 1999]. A
PayTV system [Jain et al., 2002] applies CAS to control users access to
broadcast TV. Similar to SM, CAS is able to achieve protected distribution
of the content.

In this paper, we propose StreamTo, which combines aspects of CAS
and SM to design a content protection approach, supported by a tamper-

182 EXPERIMENTS IN RIGHTS CONTROL

Streaming Audio Protection 9.1. INTRODUCTION

resistant hardware token, e.g. a USB dongle. We believe that in the fore-
seeable future, the hardware token will become common due to the con-
venience it provides to users and its reasonable price. A tamper-resistant
hardware token can also provide protected storage for the content.

In addition, StreamTo has some additional benefits:

• It allows using content without an active Internet connection i.e.,
offline, or when the user does not have sufficient bandwidth. Simi-
larly, the content provider does not have to worry about overloaded
servers when there is a large number of users demanding online ac-
cess.

• It allows flexible sharing of content between users. The provider
can control access to different parts of the content by different users.
This is useful for business-to-business (B2B) and business-to-consumer
(B2C), for instance, when paying users can enjoy full content ac-
cess, at near CD quality, while non-paying users can listen to clips
only.

StreamTo is able to solve some of the security threats faced by CAS
and SM. This will be discussed later in section 9.4. Like most stream-
ing mechanisms, StreamTo is not easily scalable. Scalability could be
achieved by using Broadcast Encryption (pioneered by [Fiat and Naor,
1994]). However, this is beyond the scope of the present paper.

Here, we show that StreamTo is applicable, practical and secure (within
limits). To conclude, our contributions in this paper are:

• We propose StreamTo, which is able to provide a measure of protec-
tion for streaming content. The approach is inspired by concepts of
CAS and SM. We analyze the security of the approach correspond-
ing to common threats.

• We implement StreamTo on two commercial tokens, namely the
CodeMeter Stick (CM-Stick) [Buchheit and Kügler, 2004] (http:
//www.wibu.com) and the Java iButton (http://www.ibutton.com).
This shows the applicability of StreamTo.

EXPERIMENTS IN RIGHTS CONTROL 183

9.2. CAS AND SM Streaming Audio Protection

• We assess the performance of the prototype to justify the practicality
of StreamTo.

The remainder of the paper: Section 9.2 briefly explains CAS and SM,
which inspired StreamTo. Section 9.3 describes StreamTo in detail. Sec-
tion 9.4 analyzes the security of StreamTo, referring to common security
threats. Section 9.5 implements a prototype on a CM-Stick and an iBut-
ton. Section 9.6 assesses the performance of the prototype. Section 9.7
discusses some related work. The last section concludes and presents fu-
ture work.

9.2 CAS and SM

A Conditional Access System (CAS) is a smart-card-based technology [Guil-
lou, 1984], which is used in PayTV systems. The smart-card stores sub-
scription information and a secret key. A set-top-box (STB) is required to
interface with the smart-card and the television (TV).

smartcard

smartcard

smartcard

Provider

KMS

updates
key

streaming
encrypted content

broadcasts
key

decrypts and
displays

STB TV

STB TV

STB TV
interfaces

Figure 9.2: An abstract view of a conditional access system (CAS).

184 EXPERIMENTS IN RIGHTS CONTROL

Streaming Audio Protection 9.2. CAS AND SM

The provider encrypts a TV program using a content key (which is the
same for all users) and broadcasts the encrypted TV program, as shown in
Figure 9.2.

The key management system (KMS), which is responsible for billing,
subscriber and key management, transmits the universal content key to the
authorized subscribers. A content key is encrypted with the unique secret
key stored on a smart-card [Macq and Quisquater, 1995]. The smart-card
decrypts and stores the content key received from the provider (via STB).
The STB decrypts the encrypted TV program with the content key, and
displays the program on a TV.

The provider updates the content key used to encrypt the TV pro-
gram/channel on a frequent basis (normally each 5 to 20 seconds). Once
the key is updated, the KMS must retransmit the updated content key to
the subscribers within seconds.

In a streaming mechanism (SM), as shown in Figure 9.3, the provider
encrypts the content with different content keys for different users. The
content is encrypted and transmitted to the user piecemeal, i.e., packet by
packet.

Provider

Renderer

streaming

Renderer

Renderer

Figure 9.3: An abstract view of a streaming mechanism.

A user has a renderer, which is a software application that establishes
a secure channel with the provider. The content key is transmitted to (or
generated at) the renderer when a secure streaming session is established.
The renderer then decrypts the content packet by packet with the content
key and renders it, as it is received, leaving behind no residual copy of the
content (packets) at the PC (assuming that the renderer is not hacked).

The characteristics of the content key of CAS, SM and StreamTo differ

EXPERIMENTS IN RIGHTS CONTROL 185

9.3. STREAMTO Streaming Audio Protection

Uniqueness Update
CAS A content key is shared

among all authorized
users.

The content key is up-
dated frequently.

SM A unique content key is
assigned to a user.

The content key is not
updated in a streaming
session.

StreamTo A unique content key is
assigned to a user.

The content key is up-
dated frequently.

Table 9.1: Comparison of CAS, SM and StreamTo with respect to the character-
istics of the content key.

as shown in Table 9.1. We list the two most important characteristics of
a content key: (1) uniqueness (whether the key is unique for different
content and user), and (2) update (whether the key is updated on a regular
basis).

9.3 StreamTo

In this section, we discuss StreamTo, which is outlined in Figure 9.4.

Provider
Player

Player

Token

Token

1. streaming (online)
2. transmit (offline)

indirect
streaming

Player Token

Figure 9.4: An abstract view of StreamTo.

186 EXPERIMENTS IN RIGHTS CONTROL

Streaming Audio Protection 9.3. STREAMTO

We use a token, which has a cryptographic co-processor and tamper-
resistant storage. The token is dispatched physically by the provider to a
user in the same way as a PayTV smart-card. The provider also serves
encrypted content. A user has a customized player (a software applica-
tion) that interfaces with the token, and which can play encrypted content.
The player depends on the token for providing the key stream necessary
to decrypt the content stream.

StreamTo can handle two methods of rendering the content, as shown
in Figure 9.4: online and offline. For online rendering, the provider streams
the content to the player; whereas for offline rendering, the provider trans-
mits the entire encrypted content to the player. For both access methods,
the player plays the content piecemeal, waiting for each subsequent block
of the key stream from the token, i.e., indirect streaming.

StreamTo has the characteristics of both the CAS and SM:

• The provider generates a unique content key for a user (SM provider).

• The player decrypts and plays the content piecemeal (SM renderer).

• The token stores a secret key (CAS smart-card).

• The content key is updated frequently (CAS provider).

• The token transmits the updated key for decryption to the player
(CAS KMS and smart-card).

To explain the StreamTo protocols in detail, we use the notation listed
in Table 9.2.

We explain the types of key that we use in StreamTo in section 9.3.1.
We describe the encryption and decryption process in section 9.3.2 and
section 9.3.3, respectively.

9.3.1 Keys
We use three different key types: secret key, content key and key stream.

• A secret key (SecK) is a secret shared between the provider and the
token. We assume that an attacker cannot read, modify or access this

EXPERIMENTS IN RIGHTS CONTROL 187

9.3. STREAMTO Streaming Audio Protection

Notation Meaning
SecK A secret key shared between the token and the

provider.
Ki The content key for ith content frame.
Si The key stream for ith content frame.
Pi The ith frame of content (plaintext).
Ci The corresponding ith frame of encrypted content

(ciphertext).

Table 9.2: The notation of the StreamTo protocols.

key stored on the token; it never leaves the token, and is preloaded
to the token in a secure environment of the provider.

• A content key (Ki) is used for generating the key stream. The first
content key K0 is generated randomly by the provider and sent en-
crypted (with the secret key) to the user along with the encrypted
content.

• A key stream (Si) is used to en/decrypt the content. The key stream
is derived from the content key and the content.

The size of the content key is short (e.g. 128 bits) so that a provider
can send it to a player efficiently. The size of the key stream is equal to
the size of the content so that stealing the key stream is inconvenient.

As a refinement, the provider could partition the content, using a dif-
ferent K0 for each partition. This would allow for example free use of
trailers but paid for use of the remaining content. We can also enforce dif-
ferent usage rights on different parts of content by using our LicenseScript
license protection scheme [Chong et al., 2004].

In this paper, for simplicity, we only use one content key to explain
StreamTo in the subsequent sections.

9.3.2 Encryption Process
Streaming content, e.g. an MPEG audio/video has a special structure: it is
composed of multiple frames, each of which has a descriptive header. This

188 EXPERIMENTS IN RIGHTS CONTROL

Streaming Audio Protection 9.3. STREAMTO

header contains the particular information for the corresponding frame,
e.g. bit-rate, sample-rate, etc.

P0 P1 Pn

+ + +

S0 S1

Kn

Sn

Transform
Function

Generate
Function

Generate
Function

Provider

C0 C1 Cn

K0

SecKSecKSecK

K1

Transform
Function

Generate
Function

Figure 9.5: Encryption of streaming content frame by frame at the provider with
a block of key stream, which is generated from a different content key.

StreamTo exploits this special feature of streaming content as follows:

Si = generate(Ki, SecK) (9.1)
Ki+1 = transform(Ki) (9.2)

Ci = Pi ⊕ Si (9.3)

Here, i is an integer, 0 ≤ i < last frame number. The provider uses two
functions: (1) a generate function (Equation 9.1), e.g. a pseudo-random
number generator, which generates a key stream from a content key; and
(2) a transform function (Equation 9.2), e.g. a keyed hash function, which
updates a content key. These functions must be supported by the token to
perform the decryption process, as will be discussed in section 9.3.3.

The encryption process, as shown in Figure 9.5 is performed by the
provider. The provider generates a first content key K0 randomly. The

EXPERIMENTS IN RIGHTS CONTROL 189

9.3. STREAMTO Streaming Audio Protection

generate function (Equation 9.1) takes the content key Ki and the secret
key to produces a block of key stream for the current frame (Pi). The
encrypted frame (Ci) is then XOR-ed with the block of key stream, as
shown in Equation 9.3. Finally, the next content key is calculated by the
transform function. If the output of the generate function is shorter than
the frame size, it is repeated to form the required length.

We use the secret key SecK in the generate function to ensure that the
encrypted content is bound to the token. In addition, we want to assure
that an attacker cannot derive a valid content key or key stream without
the correct secret key.

The encrypted frames (C0, · · · , Cn) are written to a new content file,
preceded by a header. The header contains the first content key (K0) (en-
crypted with the secret key SecK of the token), padding information and
information about the generate and transform functions.

9.3.3 Decryption Process
The player receives an encrypted content file from the provider. When the
player plays the encrypted content, the decryption process is executed as
shown in Figure 9.6.

The player interprets the header information of the encrypted con-
tent to retrieve the encrypted first content key K0 and other informa-
tion. The player then asks for a valid token. The authentication can be
achieved between the player and the token with standard methods [Kelsey
and Schneier, 1999]. This falls outside the scope of this paper. The player
then feed the token with the encrypted first content key (K0), so that the
token can decrypt it.

The token uses the generate function (Equation 9.1) to re-generate the
key stream, and sends it to the player. The player retrieves a frame Ci from
the encrypted content file, and decrypts it (by XOR-ing) with key stream
Si generated by the token, as shown in Equation 9.4.

Pi = Ci ⊕ Si (9.4)

The player then updates the content key using the transform function
(Equation 9.2), sends it to the token to generate the next key stream, and
next frame is decrypted with this key stream.

190 EXPERIMENTS IN RIGHTS CONTROL

Streaming Audio Protection 9.4. SECURITY ANALYSIS

At the same time, the player plays the previously decrypted frame
Pi−1. The decrypted frames will be overwritten by newly decrypted frames
after they are played (assuming the player has not been hacked).

C0 C1 Cn

+ + +

S0 S1

Kn

Sn

Transform
Function

Generate
Function

Generate
Function

Player

P0 P1 Pn

K0

SecKSecKSecK

K1

Transform
Function

Generate
Function

Token

Figure 9.6: Decryption of encrypted streaming content frame by frame with the
key stream using the content keys, while playing the decrypted frame.

9.4 Security Analysis
In this section, we analyze the security of StreamTo. We consider several
known security threats: analog hole, digital hole, streaming theft, jugular
attack, and cloning.

9.4.1 Analog and Digital Hole
The main security threat to PayTV and streaming is the widespread pro-
liferation of content-capturing tools [Wald, 2002]. This threat is known as
the “analog hole” [Holankar and Stamp, 2004], and is considered beyond

EXPERIMENTS IN RIGHTS CONTROL 191

9.4. SECURITY ANALYSIS Streaming Audio Protection

Content
Provider

Content
Renderer

Content
Output

Analog Hole

Jugular
Attack

Digital Hole

Jugular
Attack

Streaming
Theft

Hardware
Token

Cloning

Figure 9.7: Common security threats to content protection approach.

the boundary of normal content protection approach. Therefore, StreamTo
is not concerned with this security threat either.

The digital hole is another severe threat to common content protection
approach, especially for the PC. The digital hole opens between the mo-
ment of decrypting and the moment of rendering the content. An attacker
might be able to retrieve the plaintext content from the memory (especially
on the PC) because the memory is always susceptible to manipulation and
observation.

On a PC not much can be done to close the digital and analog holes;
on CE device, the digital hole is more or less plugged, but the analog hole
is still present. Watermarking is the only viable technique, which is able
to provide some measure of protection [Haitsma and Kalker, 2002].

9.4.2 Streaming Theft
An attacker can steal streaming content simply by copying the source tar-
get, e.g. URL of the streaming content, and publish it on, say, another Web
page on another server. Therefore, users can access the streaming content
stored on the provider’s server through the attacker’s Web page.

In essence, the attacker is not only stealing the streaming content but
is also stealing the original provider server’s bandwidth. This can induce
costs to the provider and can be difficult to track down.

In StreamTo, only authorized users, who possess tokens dispatched by
the original provider, can access the streaming content. Therefore, it is
not possible for other unauthorized users to access the streaming content
through another server.

192 EXPERIMENTS IN RIGHTS CONTROL

Streaming Audio Protection 9.4. SECURITY ANALYSIS

9.4.3 Jugular Attack

In a Pay-TV system, an attacker is able to obtain the plaintext keys by
watching the output of the smart-card. The attacker can then redistribute
these keys in near real-time to other users, allowing others to view the en-
crypted broadcast. The attacker can charge these users a cheaper fee. This
attack exploits the vulnerability of using a universal content key for a TV
program/channel for all users, and is known as the jugular attack [McCor-
mac, 1996].

Online StreamTo is safe from this attack because we use different con-
tent keys for different users. Therefore, the attacker’s keys are useless to
other users, even if she is able to obtain the keys and redistribute them in
near real-time.

However, for offline usage, a jugular attack poses a severe threat be-
cause the encrypted content file is stored at a user’s PC assuming a hacked
renderer. An attacker can obtain the keys by playing the encrypted content
just once: XOR the ciphertext and the plaintext provides the key stream;
or XOR the ciphertext and the key stream stolen provides the plaintext.

In any case, StreamTo is reasonably secure for short-lived content, i.e.,
if the value of he content is reduced after a short period of time. For in-
stance, a breaking news video broadcast, a stock quote price, etc. There-
fore, once the content has been decrypted and presumably saved in the
clear, we do not insist on communication with the token anymore, i.e., the
offline jugular attack and plaintext key stream do not pose a severe threat
to StreamTo anymore.

9.4.4 Cloning

Cloning [Rao et al., 2002] is a physical security threat, from which PayTV
systems suffer. A valid smart-card of a set-top-box can be cloned and
distributed illegally. This is achieved for example by using side-channel
attacks [Anderson and Kuhn, 1997] to steal and copy the secret key of a
smart-card. Thereby, home users can purchase these smart-card clones for
a lower price from an illegal distributor to access PayTV programs.

A hardware token provides a higher physical security than a smart-
card because the chip is protected by a more physical means, e.g. stainless

EXPERIMENTS IN RIGHTS CONTROL 193

9.5. PROTOTYPE Streaming Audio Protection

steel casing. Additionally, it is more expensive to clone a hardware token
than a smart-card.

In conclusion, we have argued that StreamTo is more secure than a
typical smart-card-based PayTV system and a streaming system. Other
content protection approaches have been proposed attempt to resolve some
of the aforementioned security threats, which will be discussed briefly in
section 9.7.

9.5 Prototype
In this section, we discuss the implementation of our prototype. We use
streaming audio (MP3) in our prototype because it is less demanding on
resources than video. If StreamTo can be applied practically to protect
streaming audio, we can investigate if StreamTo can support other stream-
ing content.

Section 9.5.1 presents an architectural overview of our prototype using
the iButton and the CM-Stick, and introduces the software tools that we
have used. Section 9.5.2 elaborates the implementation of StreamTo.

9.5.1 Architecture

The architectural overview of our prototype is given in Figure 9.8. The
Provider and the Player are the two applications we have created. The
Provider executes the encryption process discussed in section 9.3.2. It
takes as input an MP3 audio file and produces an encrypted audio file
as output. The Player, performs the decryption process discussed in sec-
tion 9.3.3. It asks the token (i.e., CM-Stick or iButton) continuously for
blocks of key stream to decrypt the audio.

We use five software development kits (SDK) to create the Provider
and the Player for the CM-Stick and the iButton: (1) Windows Media For-
mat (WMF) SDK (http://msdn.microsoft.com/av/), which supports
various streaming audio standards, such as WMA and MP3; (2) CodeMe-
ter (CM) SDK [WIBU, 2003], which supports interfacing with a CM-
Stick; (3) Java SDK, which provides a standard cryptography library; (4)

194 EXPERIMENTS IN RIGHTS CONTROL

Streaming Audio Protection 9.5. PROTOTYPE

Provider
(CM/Java SDK)

Player
(CM/iB-IDE/WMF SDK)

CM-Stick/
iButton

generates
encrypted content

decrypts and plays
encrypted audio piecemeal

Encrypted
Audio

provides
key stream

Audio

Figure 9.8: Architectural Overview of the prototype.

Javazoom, which supports MP3 audio; and (5) iB-IDE SDK, which sup-
ports interfacing with an iButton.

The hardware token we use in our prototype are a CodeMeter Stick(CM-
Stick) and an iButton. Their features are illustrated in Table 9.3 (Note that
the speed of the iButton is not constant and cannot be determined by ex-
ternal means [Kingpin, 2002]).

CM-Stick iButton
Manufacturer WiBu-Systems

AG, Germany
Dallas Semicon-
ductor, America

Cryptographic co-
processor Speed

24 MHz 10–20 MHz

Non-volatile mem-
ory

128 kBytes 134 kBytes

Cryptographic
algorithms

AES, Triple-DES
(for communi-
cation), ECC,
SHA-256

DES, Triple-DES,
RSA and SHA-1

Interface USB connection Serial/Parallel and
USB connection

Table 9.3: Comparison of the iButton and the CM-Stick.

EXPERIMENTS IN RIGHTS CONTROL 195

9.6. PERFORMANCE ASSESSMENT Streaming Audio Protection

9.5.2 Implementation
In this section, we give the implementation details of our prototype for
StreamTo. We use the standard Counter-mode (CTR-mode) symmetric
encryption [Lipmaa and Rogaway, 2000] to implement StreamTo by virtue
of the simplicity, efficiency and proven security of CTR-mode encryption.

The content key (Kn) is the counter of CTR-mode encryption, which
is initialized to a random n-bit string. The update function of the content
key (Equation 9.2) is simple:

Ki+1 = Ki + 1

The generation of the key stream (Sn) (Equation 9.1) is the encryption
of the counter in CTR-mode encryption:

Si = AES CBC(Ki, SecK) (CM − Stick)

Si = DES ECB(Ki, SecK) (iButton)

Here, AES CBC is AES encryption in CBC mode, which is the only
symmetric encryption supported by the CM-Stick; whereas DES ECB

is DES encryption in ECB mode, which is supported by the iButton.
In our prototypes, each time a new frame is decrypted a click is au-

dible. This allows us to point out during demonstration when decryption
happens.

In next section, we assess the performance of our prototype to justify
the practicality of StreamTo.

9.6 Performance Assessment
To justify the practicality of StreamTo, we assess the performance of our
prototype. Our prototype is built on a platform with an Intel Pentium 4, 1.4
GHz, 512 MBytes RAM, 20 GBytes hard disk space, running Windows
XP. We use a 1-minute 192 kbps MP3 audio as the sample for our perfor-
mance assessment. The sample has 2300 frames, each of which contains
623 bytes.

In our prototype, we use a serial connection for the iButton and a USB
connection for the CM-Stick.

196 EXPERIMENTS IN RIGHTS CONTROL

Streaming Audio Protection 9.6. PERFORMANCE ASSESSMENT

9.6.1 Content Key Size
The key stream is generated on the token by using the firmware symmet-
ric encryption algorithm. Therefore, to determine if the content key size
influences the performance of our prototype, we assess the performance
of symmetric encryption of the iButton and the CM-Stick.

From our previous experience, we know that the cryptographic op-
erations on the iButton are relatively slow [Chong et al., 2003e]. DES
encryption (ECB mode) of 128 bytes on the iButton takes roughly 200
ms [Chong et al., 2004].

We also need to measure the time required by the CM-Stick to perform
AES (CBC mode) encryption, which we use to generate the key stream.
We use an LSQ-fit equation to summarize the result of 10 measurements
as follows:

t = (0.5 ± 0.002) × d + (36 ± 26) ms

Here, t is the time required in milliseconds and d is the data size in bytes.
Thus, it takes approximately 100 ± 25 ms to encrypt 128-byte of data on
the CM-Stick, making the CM-Stick about twice as fast as the iButton.
This is consistent with the cryptographic co-processor speed (Table 9.3).

If we use 128 bytes of content key, i.e., 1024 bits, the iButton requires
approximately 2300 × 0.2 = 460 seconds to generate the key stream,
whereas the CM-Stick needs roughly 230 seconds. For a 1-minute MP3
this is too long, hence, we must sacrifice security for performance by (1)
using a smaller content key size; and (2) en/decrypting every n-th frame
of the audio sample only.

In our prototypes, we choose a content key of size 8 bytes (64 bits)
for the iButton and 32 bytes (256 bits) for the CM-Stick. On the CM-
Stick, it takes approximately 40±26 ms to generate a block of key stream.
However, for the iButton, it takes approximately 70 ms due to the slower
co-processor. Therefore, we also use the second tradeoff on the iButton
prototype, as will be discussed in next section.

9.6.2 Sample Bit Rate
The MP3 sample bit rate refers to the transfer bit rate for which an audio
file is encoded, e.g. an MP3 file encoded at “at a bit rate of 128 kbps”

EXPERIMENTS IN RIGHTS CONTROL 197

9.6. PERFORMANCE ASSESSMENT Streaming Audio Protection

is compressed such that it can be streamed continuously through a trans-
fer link providing a transfer rate of 128 thousand bits per second. The
lower the bit rate, the more the audio file is compressed, and the worse the
playback sound quality becomes.

On the other hand, the sampling frequency refers to the number of
samples of an audio taken per unit time, i.e., the rate at which audio signals
are sampled into digital form. Higher sampling frequency implies higher-
quality of the digital audio.

The frame size varies with the sample bit rate and sampling frequency
according to the MPEG-3 standard. We use 6 different sample bit rates
(with the same sampling frequency of 44.1 KHz) of our experiment, as
shown in Table 9.4. Each frame has standard constant time length of 26
ms. Therefore, the number of frames is determined by the time length of
the entire MP3 audio. Therefore, for 1-minute MP3, it has approximately
2300 frames.

Sample Bit Rate (kbps) File Size (MBytes) Frame Size (bytes)
64 0.46 205

128 0.92 414
160 1.14 518
192 1.37 623
224 1.60 727
256 1.83 832

Table 9.4: Different sample bit rate, with different audio file size and average
frame size.

As mentioned earlier, we use a serial port connection for the iButton
prototype. From our earlier experience, the communication between the
iButton and the player via serial connection causes a long delay [Chong
et al., 2004]. For instance, transmitting up to 128 bytes from the iButton
to the player requires approximately 0.2 second.

In addition, it takes roughly 80 ms to generate a block of key stream.
Therefore, for decrypting the audio sample (192 kbps) of 2300 frames
(1 minute of play time) by using content key of 64 bits, theoretically the
iButton needs approximately 2300 × (0.08 + 0.2 × 2) = 1104 seconds in
total to generate and transmit the key stream to the player/

198 EXPERIMENTS IN RIGHTS CONTROL

Streaming Audio Protection 9.6. PERFORMANCE ASSESSMENT

To overcome this deficiency, we modify our iButton prototype so that
StreamTo only en/decrypts every n-th frame of the audio sample. Fig-
ure 9.9 shows the measurement for n = 25, 50, and 100. We take the
average of 10 measurements. The decryption time measured includes the
time required to upload the updated content key; to generate and transmit
a block of the key stream; and XOR-ing of the encrypted frame. The graph
y = 60 indicates the actual play time of the audio sample, i.e., 1 minute.

As can be seen in Figure 9.9, the graphs of the iButton are slightly
slant, indicating that the time required to decrypt the audio frames in-
creases with faster sample bit rate. It is simply caused by the preprocessing
of the encrypted audio file: reading the audio frames from an encrypted
audio file.

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300

D
ec

ry
pt

io
n

tim
e

(s
)

Sample Bit Rate (kbps)

iButton: Every 100th frame
iButton: Every 50th frame
iButton: Every 25th frame

CM-Stick: All frames

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250 300

D
ec

ry
pt

io
n

tim
e

(s
)

Sample Bit Rate (kbps)

iButton: Every 100th frame
iButton: Every 50th frame
iButton: Every 25th frame

CM-Stick: All frames

Figure 9.9: The time required to decrypt the encrypted audio sample frame by
frame with the iButton and the CM-Stick.

When n = 100, the iButton StreamTo is able to handle the key stream
generation and audio frames decryption more efficiently, compared to
when n = 25. When n = 50, the decryption time is marginally paral-
lel with the play time of the audio sample.

EXPERIMENTS IN RIGHTS CONTROL 199

9.7. RELATED WORK Streaming Audio Protection

On the other hand, CM-Stick, due to its USB interface and faster cryp-
tographic co-processor, has far better performance than the iButton with
the serial interface, as shown in Figure 9.9. The time required to de-
crypt all the audio frames with the CM-Stick is shorter than the actual
play time of the audio sample. In conclusions, the CM-Stick (due to its
faster co-processor and USB interface) is able to provide more efficiency
to StreamTo.

9.7 Related Work

In this section, we discuss related work.

9.7.1 Content Protection Approach

Several content protection approaches have been proposed. As some of
them are proprietary, we are only able to scratch the surface.

Microsoft Secure Audio Path (SAP) [Microsoft, 2001] is a content
protection approach specifically for audio. SAP tries to plug the “digital
hole”. When a user attempts to play an audio file, which is encrypted by an
SAP-based method, the audio file is sent to a player where it is decrypted.
Some audio noise is added to the decrypted audio signal and is removed
only when the content output device (e.g. sound card) has been authen-
ticated. Therefore, even if an attacker is able to intercept the decrypted
audio signal, she will hear noise.

Digital Transmission Content Protection (DTCP) [DTCP, 1998] is pro-
posed by Hitachi, Intel, Matsuhita, Sony and Toshiba. DTCP proposes
a full-fledged content protection architecture for CE devices, which con-
sists of compliant components. Several communication protocols for these
components have been proposed to achieve key management, authentica-
tion, encrypted content transmission, content en/decryption etc., so that
the content is protected throughout its cycle of usage.

DTCP is a hardware-based approach. Similar to SAP, DTCP attempts
to patch the “digital hole” by protecting the transmission of the actual
content between devices. For using the DTCP, a certain amount of royalty
fees is required.

200 EXPERIMENTS IN RIGHTS CONTROL

Streaming Audio Protection 9.8. CONCLUSIONS AND FUTURE WORK

Both the SAP and DTCP rely on the authentication and trustworthi-
ness of the device components. Therefore, a trusted computing platform
(TCP) [Pearson et al., 2003] is a critical foundation to their approach. At
this moment, to plug the “digital hole”, TCP is deemed to be one of the
potential solutions, which is discussed in the subsequent section.

9.7.2 Trusted Platform

A group of organizations, including Intel, IBM, and HP have formed the
Trusted Computing Group (TCG). TCP tries to build a trusted and tamper-
resistant system platform, e.g. a PC, a personal device assistant (PDA) etc.,
by adding tamper-resistant chips on the motherboard. These chips, the so-
called Trusted Platform Module (TPM) and Core Root of Trust Module
(CRTM) are used to store sensitive information of users, e.g. private keys,
and the hash value of the current status of the platform.

Before any further processing on the platform is done, the current sta-
tus of the platform is validated with the hash value stored on the chip. If a
difference is detected, it might imply potentially unauthorized manipula-
tion of the platform.

However, TCP technologies may induce severe inconvenience to users,
e.g. the protected audio is only allowed to play on TCP-enabled PC but not
other portable devices. It implies that the protected content is tightly cou-
pled to the TCP platform because it is troublesome to move the secret
key securely (once the key leaves the hardware, the physical security of
the key cannot be guaranteed). Our method of using a hardware token
provides a more user-friendly content usage (e.g. users can move and use
their content “anyway and anywhere”).

9.8 Conclusions and Future Work
We propose a streaming content protection approach, the so-called StreamTo,
which combines the technology of the Internet streaming mechanism (SM),
Pay-TV Conditional Access System (CAS) and a tamper-resistant hard-
ware token.

StreamTo is able to bring tried and tested Pay-TV technology to the

EXPERIMENTS IN RIGHTS CONTROL 201

9.8. CONCLUSIONS AND FUTURE WORK Streaming Audio Protection

personal computer (PC). In addition, StreamTo is able to protect while
accessing the streaming content offline, which benefits the user (she can
access the content without Internet connection), as well as the provider
(she does not need to worry about overloaded servers when there is a large
number of users). We analyze the security of StreamTo with respect to
common security threats. We conclude that StreamTo is more secure than
SM and CAS.

We implement StreamTo on two commercial tokens, namely the iBut-
ton and the CM-Stick, by using the CTR-mode of symmetric encryption.
Thus, we show the applicability of StreamTo. We also evaluate the per-
formance of the implementation to justify the practicality of StreamTo.
The CM-Stick has a better performance than the iButton due to its faster
cryptographic co-processor and USB interface.

Our future work is: (1) To integrate StreamTo with a standard stream-
ing algorithm, such as the Real Time Streaming Protocol (RTSP). Thereby,
we can use StreamTo for more efficient Internet streaming; and (2) To
evaluate the performance of StreamTo on the network, by taking into ac-
count some Internet parameters, such as the bandwidth latency and delay,
etc.

202 EXPERIMENTS IN RIGHTS CONTROL

Part IV
EPILOGUE

This part provides the conclusions of the thesis and suggestions for
future research.

203

CHAPTER 10

CONCLUSIONS AND FUTURE WORK

The thesis starts with three questions (see pp.1):

1. How can we control the way in which digital content is used?

2. How can we guarantee that users abide by our rules when using the
digital content?

3. How can we allow the users to use the content anyway they like
without violating our rules?

We investigate these questions in a number of experiments. The result
of these experiments is a logic-based language, namely LicenseScript. We
have also designed, implemented, and evaluated when necessary an archi-
tecture, which consists of cryptographic protocols, software components,
etc. to support LicenseScript in enforcing the rights.

We also conclude several principles of rights control, as discussed in
the following section.

10.1 Principles of Rights Control
Two fundamental principles have emerged, as a result of the experiments
presented in the thesis:

205

10.1. PRINCIPLES OF RIGHTS CONTROL Conclusions and Future Work

Rights Control
Principle 1
Rights Expression
Language

Principle 2
Rights Enforcement
Mechanism

Principle 3
Layered Security
Infrastructure

Principle 4
Open and
Standardization

Principle 5
Business Model

Principle 6
Copyright Law

Principle 7
Usability

Principle 8
Content and Rights

Management

Figure 10.1: The principles of rights control systems (Rights Control Eight-
Legged Stool).

Principle 1 An expressive rights expression language is required.

A rights expression language (REL) plays an important role in rights
control. The language is used to construct a license, which specifies
under which condition, what usage right can be exercised by a user
on the content. A REL must be capable of providing fine-grained
control on the content. Therefore, a REL must be expressive, flexi-
ble and extensible to express complex and novel usage scenarios.

Principle 2 A tamper-resistant rights enforcement architecture is unavoid-
able.

A tamper-resistant rights enforcement architecture is required to en-
force the rights specified on the license correctly and securely. The
components that constitute the rights enforcement architecture must
be able to withstand attacks that a pure software solution on a stan-
dard personal computer cannot provide.

From our experiments, we conclude several additional general princi-
ples to support rights control, as shown in Figure 10.1:

206 EXPERIMENTS IN RIGHTS CONTROL

Conclusions and Future Work 10.1. PRINCIPLES OF RIGHTS CONTROL

Principle 3 A layered security infrastructure of rights control is essential.

Rushby [1981] suggests that “the security of a secure system should
be achieved partly through the physical separation of its individual
components and partly through the mediation of trusted functions
performed within some of these components”. A secure system
should thus be extensible, flexible, distributed, simple and verifi-
able. To support more novel usage scenarios, which emerge fre-
quently, the security infrastructure of a rights control system must
be layered. For instance, the concept of authorized domain [van den
Heuvel et al., 2002] is proposed to support home-network, where
various consumer electronic (CE) devices are inter-networked for
using the digital content.

Principle 4 Open and standard solutions are required.

There are many rights control solutions available, yet most of them
are proprietary and incompatible with each other. This induces a
heavy financial burden to providers and severe inconvenience to
users. For instance, a DRM-enabled music piece of Windows Me-
dia Player cannot be played by a portable MP3 player. Therefore, an
open and standard solution is required [Bremer and Buhse, 2003],
which is able to (1) improve quality and reliability of rights control
services; (2) increase compatibility and interoperability of rights
control components and protocols; and (3) reduce the variety of
data formats, metadata, algorithms and architectures, thus to attain
economies of scale.

Principle 5 A flexible and adaptable business model is required.

A business model is “a unique blend of three streams that are crit-
ical to the business, which include the value stream for the busi-
ness partners and the buyers, the revenue stream, and the logistical
stream” [Buhse and Wetzel, 2003]. A business model also encapsu-
lates the manner in which the content is distributed, such as central-
ized distribution (from the content provider to the users directly) or
peer-to-peer distribution (among users themselves). The business
model must be flexible to satisfy increasing demands of different

EXPERIMENTS IN RIGHTS CONTROL 207

10.1. PRINCIPLES OF RIGHTS CONTROL Conclusions and Future Work

parties and adaptable to work seamlessly with the underlying rights
control architecture.

Principle 6 A universal and full-fledged copyright law is needed.

Rights control requires the support from the copyright law, espe-
cially when there is a discovery of misuse of the copyrighted con-
tent. However, copyright law is diverse in different regions and im-
mature in its support of digital content. The interplay between rights
control and copyright law is intricate, since rights control can dis-
place and override copyright law, while the law can constrain rights
control [Samuelson, 2003]. Therefore, a universal and full-fledged
copyright law is needed.

Principle 7 Usability requires extensive care.

Usability [Nielson, 1994] has become increasingly important in se-
curity [Yee, 2002]. A complex user-interface (UI) design or user’s
carelessness can always compromise the security [Whitten and Ty-
gar, 1999]. For example, the use of passwords that can easily be
guessed, or pin codes written on bank cards. Therefore, a user-
friendly UI and sufficient education on using the system for users
are necessary [Yee, 2002]. Furthermore, the rights control system
should be easy to install, use and maintain so that the users will not
feel uncomfortable.

Principle 8 A flexible content and rights management is required.

Content management [Rosenblatt and Dykstra, 2002] is critical to
aid in building a rights control system. The lifecycle of content,
i.e., creation, promotion, storage, distribution, and sale is partic-
ularly important if such rights control system is to generate rev-
enue. Rights management, which includes rights creation, associa-
tion (with the content), sharing, transfer, revocation, etc. is actually
equally important. Usage control model [Sandhu and Park, 2003] is
not yet able to support rights management because it is not capable
of specifying administrative and delegation right.

As we have shown in the thesis, LicenseScript is a flexible and ex-
pressive rights expression language (Principle 1), and its underlying rights

208 EXPERIMENTS IN RIGHTS CONTROL

Conclusions and Future Work 10.2. FUTURE RESEARCH

enforcement architecture is able to achieve an extent level of tamper-
resistance (Principle 2). Additionally, we have also shown that Licens-
eScript is capable of specify a wide variety of business models, thence
LicenseScript is able to aid in Principle 5. LicenseScript is also able to
model a useful copyright law, i.e., fair use, i.e., LicenseScript may be able
to support Principle 7. We also have shown that LicenseScript is capable
of supporting rights management, i.e., Principle 8.

The aforementioned principles are closely related to each other. For
example, to fulfill Principle 7, Principle 4 is needed. Ultimately, the se-
curity of a rights control system can only be as good as the weakest link,
which is formed by the users [Schneier, 2000]. There are different types
of attackers [Abraham et al., 1991] who produce malicious tools to under-
mine the rights control systems. Users can easily obtain these tools via the
Internet.

Currently, no one knows whether a balanced rights control system,
which fulfills the aforementioned principles, that protects interests of users
and the providers at large is ultimately feasible, from technological, busi-
ness and legal perspective [Bechtold, 2003].

In short, the question of “can a ‘good enough security’ [Sandhu, 2003]
for rights control ever exist” still requires extensive exploration.

10.2 Future Research
The thesis has explored two fundamental aspects of rights control (ex-
pressiveness and enforcement). In this chapter, we present research topics
appropriate for further investigation.

Kernel-based protection. Principle 2 states the importance of tamper-
resistance for rights enforcement components. We present a content pro-
tection approach at the application level in chapter 9. However, many
believe that a kernel-based approach is the only proper solution to thor-
ough and secure content protection, i.e., a solution with a secure operating
system and a tamper-proof machine platform.

The trusted computing platform (TCP) [Pearson et al., 2003] has been
proposed by Intel, HP, IBM and other giants. Meanwhile, Microsoft has

EXPERIMENTS IN RIGHTS CONTROL 209

10.2. FUTURE RESEARCH Conclusions and Future Work

been developing the “next-generation secure computing base” (NGSCB,
previously known as Palladium), which is composed of a trusted hard-
ware architecture and a secure operating system. However, these solutions
have not been used in practice due to several reasons: (1) Technologically,
these solutions are still in their adolescent state and most likely will be
incompatible to each other (which cannot satisfy Principle 4); and (2) So-
cially, users fear that these solutions will violate their privacy, and con-
strain their freedom of using their machines (which cannot achieve Princi-
ple 7). Therefore, a proven, technologically secure, and socially workable
kernel-based content protection is required.

Authorized domain security. Most observers agree that home network-
ing will only grow: Soon, a family’s personal computer, television, set-
top-box, stereo, DVD player, and other consumer electronic (CE) devices
will be networked to form an authorized domain [van den Heuvel et al.,
2002]. The content can be freely accessed, moved and copied amongst
these CE devices. However, the same content cannot be accessed on do-
mains other than the one for which it has been authorized. Therefore,
the user is free to access and distribute the content within her authorized
domain, while the content provider can protect her content from being
illegally distributed.

Pestoni et al from IBM have provided rigorous implementation de-
tails for the authorized domain. They have proposed the eXtensible Con-
tent Protection (xCP) mechanism [Pestoni et al., 2004; Pestoni and Drews,
2003], which uses broadcast encryption [Fiat and Naor, 1994], to tackle
the content and device management in an authorized domain. Several pro-
tocols have been designed in xCP to handle the security when devices join
or leave the authorized domain. The main advantage of these protocols is
that they exploit symmetric algorithm that can reduce resource consump-
tion on the device.

However, other security-related issues of authorized domain, such as
what happens when two authorized domains merge have not been ad-
dressed. This is closely related to Principles 3, 4, 5 and 7.

Interoperability and usability. To achieve Principles 4, 5 and 7, inter-
operability and usability of rights control must be considered carefully.

210 EXPERIMENTS IN RIGHTS CONTROL

Conclusions and Future Work 10.2. FUTURE RESEARCH

There is a growing agreement that interoperability and usability must be-
come one of the principal attributes of a mature rights control infrastruc-
ture [Lyon, 2001].

Content providers sometimes attempt to get a large market share by
producing proprietary products, which can be used to access only specific
digital content. This constrains the users freedom significantly. For ex-
ample, a Windows DRM-enabled MP3 cannot be played by other portable
MP3 players. This has scared users from using these proprietary products,
and the business involved might eventually suffer. Therefore, we require a
solution that is able to achieve interoperability and compatibility amongst
these products. This is another potential issue for future work.

As stated in Principle 7, security of the rights control should not com-
promise the usability, and vice versa [Whitten and Tygar, 1999]. It is not
surprise that the installation, usage and maintenance of the rights control
components can be arduous to users who do not possess sufficient tech-
nical knowledge. Therefore, it is challenging to find a balanced solution
between security and usability for rights control. In short, by achieving
interoperability and usability, users can use the digital content anywhere,
anytime, and on any platform easily.

Value of protection to content or metadata. Our experiments show
that the protection of license, content or metadata is highly resource-
consuming in terms of processor power, memory, time, etc. This may
inconvenience the users in using a rights control system [Chong et al.,
2004; Cheng et al., 2004; Chong et al., 2002, 2003e]. For example, a user
has to wait for 1 minute to create an audit log of playing a music.

Digital content can be of different value to different parties [Aichroth
et al., 2004; Rosenblatt and Dykstra, 2002]: Some content value degrades
after a short period of time, e.g. a stock price or breaking news; some
content has value, which does not change for a longer period of time,
e.g. film or music. Some content does not have any value as far as the
user is concerned, but it is highly valuable to the content provider, e.g.
audit logs. We need to determine the degree of protection required for the
digital content according to its current value. Therefore, it is worthwhile
to investigate the balance of the content value and the degree of protection,
over a period of time.

EXPERIMENTS IN RIGHTS CONTROL 211

10.2. FUTURE RESEARCH Conclusions and Future Work

This concludes our discussion on future research directions.

212 EXPERIMENTS IN RIGHTS CONTROL

BIBLIOGRAPHY

M. Abadi. Logic in access control. In 18th Annual IEEE Symposium on Logic in
Computer Science, pages 228–232. IEEE Computer Society Press, June 2003.

D. G. Abraham, G. M. Dolan, and G. P. Double. Transaction security system.
IBM System Journal, 30(2):206–229, 1991.

P. Aichroth, S. Puchta, and J. Hasselbach. Personalized previews: An alternative
concept of virtual goods marketing. In Int. Workshop for Technology, Econ-
omy, Social and Legal Aspects of Virtual Goods, pages 10 pages (91–100), Il-
menau, Germany, May 2004. URL http://virtualgoods.tu-ilmenau.

de/2004/.
R. Anderson and M. Kuhn. Low cost attacks on tamper-resistant devices. In

B. Christianson, B. Crispo, T. Mark A. Lomas, and M. Roe, editors, Secu-
rity Protocols, 5th Internation Workshop Proceedings, volume 1361 of LNCS,
pages 125–136. Springer-Verlag, April 1997.

K. R. Apt. From Logic Programming to Prolog. Prentice Hall, Hertfordshire,
United Kingdom, 1997.

K. R. Apt and D. Pedreschi. Reasoning about termination of pure Prolog pro-
grams. Information and Computation, 106(1):109–157, 1993.

M. J. Atallah and J. Li. Enhanced smart-card based license management. In IEEE
International Conference on E-Commerce, pages 111–119. IEEE Computer
Society, June 2003.

D. Aucsmith. Tamper resistance software: An implementation. In Proceedings of
First International Workshop on Information Hiding, volume 1174 of LNCS,
pages 317–333. Springer-Verlag, 1996.

213

BIBLIOGRAPHY

J-P. Banâtre, P. Fradet, and D. L. Métayer. Gamma and the chemical reaction
model: Fifteen years after. In C. Calude, G. Paun, G. Rozenberg, and A. Salo-
maa, editors, Workshop on Multiset Processing (WMP), volume 2235 of LNCS,
pages 17–44. Springer-Verlag, Berlin, August 2001.

S. Bechtold. The present and future of digital rights management – musings
on emerging legal problems. In Digital Rights Management – Technological,
Economic, Legal and Political Aspects, volume 2770 of LNCS, pages 597–654.
Spriner-Verlag, 2003.

M. Bellare and B. S. Yee. Forward integrity for secure audit logs. Technical re-
port, UC at San Diego, Dept. of Computer Science and Engineering, Novem-
ber 1997. URL http://citeseer.nj.nec.com/bellare97forward.

pdf.
E. Bertino, S. Castano, E. Ferrari, and M. Mesili. Controlled access and dis-

semination of XML documents. In Proceedings 2nd ACM Workshop on Web
Information and Data Management (WIDM’99), pages 22–27, 1999.

M. Bichler and A. Segev. A brokerage framework for internet commerce. Dis-
tributed and Parallel Databases: Special Issue on E-Commerce, 7(2):133–
148, April 1999.

A. Bossi, N. Cocco, and M. Fabris. Proving termination of logic programs
by exploiting term properties. In S. Abramsky and T.S.E. Maibaum, edi-
tors, Theory and Practice of Software Development (TAPSOFT 91), volume
494 of LNCS, pages 153–180, Brighton, United Kingdom, April 1991, 1991.
Springer-Verlag.

O. Bremer and W. Buhse. Standardization in DRM – trends and recommenda-
tions. In E. Becker, W. Buhse, D. Günnewig, and N. Rump, editors, Digital
Rights Management: Technological, Economic, Legal and Political Aspects,
volume 2770 of LNCS, pages 334–343. Springer-Verlag, November 2003.

S. Brin, J. Davis, and H. Garcia-Molina. Copy detection mechanisms for digital
documents. In Proceedings of the ACM SIGMOD Annual Conference San
José, pages 398–409, May 1995.

M. Buchheit and R. Kügler. Secure music content standard – content pro-
tection with codemeter. In 4th Open Workshop of Interactive Music
Network Multimedia MUSICNETWORK, page Paper 10, September 2004.
URL http://www.interactivemusicnetwork.org/events/Fourth

OpenWorkshop 2004/%musicnetwork-xxxc.pdf.
W. Buhse and A. Wetzel. Creating a framework for business models for digital

content – mobile music as case study. In E. Becker, W. Buhse, D. Günnewig,

214 EXPERIMENTS IN RIGHTS CONTROL

BIBLIOGRAPHY

and N. Rump, editors, Digital Rights Management: Technological, Economic,
Legal and Political Aspects, volume 2770 of LNCS, pages 279–295. Springer-
Verlag, November 2003.

L. J. Camp. DRM: doesn’t really mean digital copyright management. In Pro-
ceedings of the 9th ACM conference on Computer and Communications Secu-
rity, pages 78–87. ACM Press, 2002.

J. Cheng, C. N. Chong, J. Doumen, S. Etalle, P. H. Hartel, and S. Nikolaus.
StreamTo: Streaming content using tamper-resistant tokens. Technical Report
TR-CTIT-04-47, Centre for Telematics and Information Technology, Univ. of
Twente, The Netherlands, November 2004.

D. M. Chess. Security issues in mobile code systems. In G. Vigna, editor, Mo-
bile Agents and Security, volume 1419 of LNCS, pages 1–14. Springer-Verlag
Berlin, 1998.

C. N. Chong, R. Corin, S. Etalle, P. H. Hartel, W. Jonker, and Y. W. Law. Licens-
eScript: A novel digital rights language and its semantics. In K. Ng, C. Busch,
and P. Nesi, editors, 3rd International Conference on Web Delivering of Music
(WEDELMUSIC), pages 122–129, Los Alamitos, California, United States,
September 2003a. IEEE Computer Society Press.

C. N. Chong, R. Corin, S. Etalle, P. H. Hartel, and Y. W. Law. LicenseScript:
A novel digital rights language. In Int. Workshop for Technology, Economy,
Social and Legal Aspects of Virtual Goods, page Paper 11, Ilmenau, Ger-
many., May 2003b. URL http://www.ub.utwente.nl/webdocs/ctit/

1/000000ba.pdf.
C. N. Chong, S. Etalle, and P. H. Hartel. Comparing logic-based and XML-

based Rights Expression Languages. Technical Report TR-CTIT-03-30, Cen-
tre for Telematics and Information Technology, Univ. of Twente, The Nether-
lands, July 2003c. URL http://www.ub.utwente.nl/webdocs/ctit/

1/000000cd.pdf.
C. N. Chong, S. Etalle, and P. H. Hartel. Comparing Logic-based and XML-based

Rights Expression Languages. In R. Meersman and Z. Tari, editors, Proceed-
ings of On The Move to Meaningful Internet Systems 2003: OTM 2003 Work-
shops, volume 2889 of LNCS, pages 779–792, Berlin, Germany, November
2003d. Springer-Verlag.

C. N. Chong, S. Etalle, P. H. Hartel, R. Joosten, and G. Kleinhuis. Service bro-
kerage with Prolog. In Proceedings of 7th International Conference on En-
terprise Information Systems (ICEIS 2005), page To appear. INSTICC Press,
May 2005.

EXPERIMENTS IN RIGHTS CONTROL 215

BIBLIOGRAPHY

C. N. Chong, Z. Peng, and P. H. Hartel. Secure audit logging with tamper-
resistant hardware. In D. Gritzalis, S. D. C. di Vimercati, P. Samarati, and
S. K. Katsikas, editors, 18th IFIP International Information Security Confer-
ence (IFIPSEC), volume 250 of IFIP Conference Proceedings, pages 73–84.
Kluwer Academic Publishers, May 2003e.

C. N. Chong, B. Ren, J. Doumen, S. Etalle, P. H. Hartel, and R. Corin. Li-
cense protection with a tamper-resistant token. In C. H. Lim and M. Yung,
editors, 5th Workshop on Information Security Applications (WISA 2004), vol-
ume 3325 of LNCS, pages 224–238. Springer-Verlag, August 2004.

C. N. Chong, R. van Buuren, P. H. Hartel, and G. Kleinhuis. Security attribute
based digital rights management (SABDRM). In F. Boavida, E. Monteiro, and
J. Orvalho, editors, Joint Int. Workshop on Interactive Distributed Multimedia
Systems/Protocols for Multimedia Systems (IDMS/PROMS), volume 2515 of
LNCS, pages 339–352. Springer-Verlag, November 2002.

B. Cohen. Incentives build robustness in BitTorrent. In Proceedings of the 1st
Workshop on Economics of Peer-to-Peer Systems, page To appear, June 2003.
URL http://bitconjurer.org/BitTorrent/bittorrentecon.pdf.

C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient, and
stealthy opaque constructs. In 25th Principles of programming languages
(POPL), pages 184–196, San Diego, California, United States, January 1998.
ACM Press, New York.

R. Corin, C. N. Chong, S. Etalle, and P. H. Hartel. How to pay in Licens-
eScript. Technical Report TR-CTIT-03-31, Centre for Telematics and Infor-
mation Technology, Univ. of Twente, The Netherlands, July 2003.

R. Corin and S. Etalle. An improved constraint-based system for the verification
of security protocols. In M. V. Hermenegildo and G. Puebla, editors, 9th In-
ternational Static Analysis Symposium (SAS), volume 2477 of LLNCS, pages
326–341. Springer-Verlag, September 2002.

E. Damiani, S. de C. di Vimercati, S. Paraboschi, and P. Samarati. Design and
implementation of an access control processor for XML documents. Computer
Networks: The International Journal of Computer and Telecommunications
Networking, 33:59–75, June 2000a.

E. Damiani, S. de C. di Vimercati, S. Paraboschi, and P. Samarati. Securing
XML documents. In Advances in Database Technology - EDBT 2000, Pro-
ceedings 7th International Conference on Extending Database Technology,
volume 1777 of Lecture Notes of Computer Science, pages 121–135. Springer,
March 2000b.

216 EXPERIMENTS IN RIGHTS CONTROL

BIBLIOGRAPHY

D. De Schreye and S. Decorte. Termination of logic programs: the never-ending
story. Journal of Logic Programming, 19–20:199–260, 1994.

F. T. H. den Hartog, N. H. G. Baken, D. V. Keyson, J. J. B. Kwaaitaal, and
W. A. M. Snijders. Tackling the complexity of Residential Gateway in an
unbundling value chain. In Proceedings of XVth International Symposium on
Services and Local AccesS (ISSLS 2004), page To appear. IEE, March 2004.

J. DeTreville. Binder, a logic-based security language. In Proceedings of IEEE
Symposium on Security and Privacy, pages 105–113. IEEE Computer Society,
March 2002.

R. M. Dijkman, L. F. Pires, and S. M. M. Joosten. Calculating with Concepts:
a technique for the development of business process support. In A. Evans,
R. France, A. Moreira, and B. Rumpe, editors, Proceedings of the UML 2001
Workshop on Practical UML-Based Rigorous Development Methods, volume 7
of Lecture Notes in Informatics, pages 87–98. GI-Edition, October 2001. ISBN
3-88579-335-0.

J. Dittman, A. Behr, M. Stabenau, P. Schmitt, J. Schwenk, and J. Ueberberg.
Combining digital watermarks and collusion secure fingerprints for digital im-
ages. In IEE Electronics and Communications, London, pages 6/1–6/6, 2000.

DTCP. 5C digital transmission content protection – white paper. Technical report,
Hitachi, Intel, Matsushita, Sony and Toshiba, July, 14 1998. URL http:

//www.dtcp.com/.
G. Durfee and M. Franklin. Distribution chain security. In Proceedings of the 7th

ACM Conference on Computer and Communications Security, pages 63–70.
ACM Press, New York, 2000.

A. M. Eskicioglu and E. J. Delp. An overview of multimedia content protection
in consumer electronics devices. Signal Processing: Image Communication,
16:681–699, 2001.

S. Etalle and M. Gabbrieli. Layered modes. The Journal of Logic Programming,
39(1–3):225–244, 1999.

S. Farrell and R. Housley. An Internet Attribute Certificate Pro-
file for Authorization, IETF Draft. PKIX Working Group, Jan-
uary 2001. URL http://search.ietf.org/internet-drafts/

draft-ietf-pkix-ac509prof-09.txt.
J. Feghhi and P. Williams. Digital Certificates: Applied Internet Security.

Addison-Wesley, October 1998.
E. W. Felten. A skeptical view of DRM and fair use. Communications of ACM,

46(4):57–59, April 2003.

EXPERIMENTS IN RIGHTS CONTROL 217

BIBLIOGRAPHY

A. Fiat and M. Naor. Broadcast encryption. In Advances in Cryptology
(CRYPTO’03) Proceedings, volume 773 of LNCS, pages 480–491, Santa Bar-
bara, California, 1994. Springer-Verlag.

P. Fletcher, M. Waterhouse, and M. Clark. Web Services Business Strategies and
Architectures. APress, July 2003.

J. Fridrich. Robust digital watermarking based on key-dependent basis func-
tions. In Proceedings of Second International Workshop on Information Hid-
ing, USA, pages 143–157, 1998.

B. Gelbord, H. Hut, G. Keinhuis, and E. Kwast. Access control based on at-
tribute certificates. In Proceedings of the IADIS International Conference
WWW/Internet 2002 (ICWI 2002), pages 283–290. IADS, November 2002.

D. M. Goldschlag and D. W. Kravitz. Beyond cryptographic conditional access.
In USENIX Workshop on Smartcard Technology, pages 87–91. USENIX As-
sociation, May 1999.

D. Gollmann. Computer Security. John Wiley & Sons, 1999.
J. Goshi and R. E. Ladner. Algorithms for dynamic multicast key distribution

trees. In Proceedings of of the twenty-second annual symposium on Principles
of distributed computing, pages 243–251. ACM Press, 2003.

T. C. Greene. MS digital rights management scheme cracked. TheRegister.co.uk,
October 2001. URL http://www.theregister.co.uk/content/4/

22354.html.
A. R. Greenwald and J. O. Kephart. Shopbots and pricebots. In Proceedings of

the Sixteenth International Joint Conference on Artificial Intelligence, pages
506–511. Morgan Kaufmann Publishers Inc., 1999.

L. Guibault. Copyright limitations and contracts: Are restrictive click-warp li-
cense valid? Journal of Digital Property Law, 2(1):144–183, November 2002.

L. C. Guillou. Smart cards and conditional access. In Advances in Cryptology
(EUROCRYPT 84), volume 209 of LNCS, pages 480–485. Springer-Verlag,
1984.

C. Gunter, S. Weeks, and A. Wright. Models and languages for digital rights. In
Proceedings of the 34th Annual Hawaii International Conference on System
Sciences (HICSS-34), pages 4034–4038, Maui, Hawaii, United States, January
2001. IEEE Computer Society Press.

C. A. Gunter. Semantics of Programming Languages: Structures and Techniques.
MIT Press, 1992.

H. Guo. Digital rights management (DRM) using XrML. In T-110.501 Seminar

218 EXPERIMENTS IN RIGHTS CONTROL

BIBLIOGRAPHY

on Network Security 2001, page Poster paper 4, 2001. URL http://www.

tml.hut.fi/Studies/T-110.501/2001/papers/.
R. H. Guttman and P. Maes. Agent-mediated integrative negotiation for retail

electronic commerce. In Selected Papers from the First International Work-
shop on Agent Mediated Electronic Trading Agent Mediated Electronic Com-
merce, volume 1571 of Lecture Notes in Computer Science, pages 70–90.
Springer-Verlag, 1998.

J. Haitsma and T. Kalker. A highly robust audio fingerprinting system. In 3rd
International Conference on Music Information Retrieval (ISMIR), pages 107–
115, 2002.

M. H. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection in operating systems.
Communications of the ACM, 19(8):461–471, 1974.

F. Hartung and F. Ramme. Digital rights management and watermarking of mul-
timedia content for m-commerce applications. IEEE Communications Maga-
zine, 38(11):78–84, November 2000.

D. Henry. Who’s got the key. In Proceedings of the 27th annual SIGUCCS Con-
ference on Mile high expectations, pages 106–110, Denver, Colorado, United
States, 1999. ACM Press.

B. Hillen, J. Kwaaitaal, A. van Neerbos, I. Passchier, and D. S. Rivero. Man-
agement requirements for residential gateways. Technical Report Deliverable
D1.1 Project TSIT 1021, KPN Research and TU/e, The Netherlands, August
2002.

D. Holankar and M. Stamp. Secure streaming media and digital rights man-
agement. In Proceedings of the 2004 Hawaii International Conference on
Computer Science, pages 85–96. ACM Press, January 2004.

G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279–295, May 1997.

B. Horne, L. Matheson, C. Sheehan, and R. E. Tarjan. Dynamic self-checking
techniques for improved tamper resistance. In Workshop on Security and Pri-
vacy in Digital Rights Management 2001, pages 141–159, February 2001a.
URL http://www.star-lab.com/sander/spdrm/papers.html.

B. Horne, B. Pinkas, and T. Sander. Escrow services and incentives in peer-
to-peer networks. In Proceedings of the 3rd ACM Conference on Electronic
Commerce, pages 85–94, October 2001b.

R. Iannella. Open digital rights management. In World Wide Web Consortium
(W3C) DRM Workshop, page Position paper 23, January 2001. URL http:

//www.w3.org/2000/12/drm-ws/pp/.

EXPERIMENTS IN RIGHTS CONTROL 219

BIBLIOGRAPHY

P. C. Jain, S. Joshi, and V. Mitra. Conditional access in digital television. In
The 8th National Conference Communications (NCC) 2002, page Technical
Session paper 30, January 2002. URL http://www.ee.iitb.ac.in/uma/
∼ncc2002/proc/NCC-2002/.

R. Joosten, J-W. Knobbe, P. Lenoir, H. Schaafsma, and G. Kleinhuis. Speci-
fications for the rge security architecture. Technical Report Deliverable D5.2
Project TSIT 1021, TNO Telecom and Philips Research, The Netherlands, Au-
gust 2003.

P. Judge and M. Ammar. The benefits and challenges of providing content pro-
tection in peer-to-peer systems. In Int. Workshop for Technology, Economy,
Social and Legal Aspects of Virtual Goods, page 12 pages, Ilmenau, Germany,
May 2003. URL http://virtualgoods.tu-ilmenau.de/2003/.

T. Kalker, D. H. J. Epema, P. H. Hartel, R. L. Lagendijk, and M. van Steen.
Music2Share - Copyright-Compliant music sharing in P2P systems (invited
paper). Proceedings of the IEEE Special Issue on Digital Rights Management,
92(6):961–970, June 2004.

J. Kelsey and B. Schneier. Authenticating secure tokens using slow memory
access (extended abstract). In USENIX Workshop on Smart Card Technology,
pages 101–106. USENIX Press, 1999.

Kingpin. A practical introduction to the dallas semiconductor ibutton. Technical
report, @Stake, Inc., 2002. URL http://www.atstake.com/research/

reports/acrobat/practical introduction %to ibutton.pdf.
D. W. Kravitz and D. M. Goldschlag. Conditional access concepts and principles.

In Proceedings of the 3rd International Conference on Financial Cryptogra-
phy, volume 1648 of LNCS, pages 158–172. Springer-Verlag, 1999.

C. Kruegel. Network Security and Secure Applications: The Industrial Informa-
tion Technology Handbook. CRC Press, May 2004. ISBN 0-849-31985-4.

M. Kudo and S. Hada. XML document security based on provisional authoriza-
tion. In Proceedings of the 7th ACM Conference on Computer and Communi-
cations Security, pages 87–96, 2000.

S. H. Kwok and S. M. Lui. A license management model to support B2C and
C2C music sharing. In 10th International World Wide Web Conference, Hong
Kong, pages 136–137, May 2001.

F. LaMonica. Streaming media. Linux Journal, 81es(6), January 2001.
L. Lamport. Password authentication with insecure communication. In Com-

munications of the ACM, volume 24, pages 770–772. ACM Press, November
1981.

220 EXPERIMENTS IN RIGHTS CONTROL

BIBLIOGRAPHY

B. Lampson. Protection. ACM Operating Systems Reviews, 8(1):18–24, January
1974.

N. Li and M. V. Tripunitara. Security analysis in role-based access control. In
Proceedings of the 9th ACM symposium on Access control models and tech-
nologies, pages 126–135. ACM Press, 2004. ISBN 1-58113-872-5.

D. Lie, C. Thekkath, M. Mitchell, and P. Lincoln. Architectural support for copy
and tamper resistant. In Architectural Support for Programming Languages
and Operating Systems, pages 168–177, 2000.

J. Linn. Attribute certification: An enabling technology for delegation and role-
based controls in distributed environments. In Proceedings of the 4th ACM
Workshop on role-based access control on Role-based access control, pages
121–130, Fairfax, Virgina, United States, 1999. ACM Press.

H. Lipmaa and P. Rogaway. Comments to NIST concerning AES-modes of
operations: CTR-mode encryption. In Symmetric Key Block Cipher Modes
of Operation Workshop, page Electronic Proceedings, October 2000. URL
http://www.tcs.hut.fi/∼helger/papers/lrw00/.

J. W. Lloyd. Foundations of Logic Programming. Symbolic Computation – Arti-
ficial Intelligence. Springer-Verlag, 1987. Second edition.

G. Lowe. Breaking and fixing the Needham-Schroeder Public-Key protocol using
FDR. Software Concepts and Tools, 17:93–102, 1996.

G. Lyon. The Internet marketplace and digital rights management. National
Institute for Standards and Technology, June 2001. URL http://www.itl.

nist.gov/div895/docs/GLyonDRMWhitepaper.pdf.
B. M. Macq and J.-J Quisquater. Cryptology for digital tv broadcasting. Pro-

ceedings of IEEE, 83(6):944–957, 1995.
J. McCormac. European Scrambling Systems. Waterford University Press, 1996.
J. McLean. Security models. In J. Marciniak, editor, Encyclopedia of Software

Engineering. John Wiley & Sons, 1994. URL http://citeseer.ist.

psu.edu/mclean94security.html.
A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Handbook of Applied

Cryptography, chapter 12. CRC Press, 2001.
Microsoft. Understanding secure audio path. Technical report, Microsoft,

2001. URL http://www.microsoft.com/windows/windowsmedia/

drm/whitepapers.aspx.
M. Mourad, J. Munson, T. Nadeem, G. Pacifici, and M. Pistoria. WebGuard:

A system for web content protection. In 10th International World Wide Web

EXPERIMENTS IN RIGHTS CONTROL 221

BIBLIOGRAPHY

Conference, Hong Kong, pages 142–143, May 2001.
D. Mulligan and A. Burstein. Implementing copyright limitations in rights ex-

pression languages. In J. Feigenbaum, editor, Proceedings of 2002 ACM CCS-
9 Workshop on Security and Privacy in Digital Rights Management, volume
2696 of LNCS, pages 137–154. Springer-Verlag, November 2002.

D. K. Mulligan. Digital rights management and fair use by design. Communica-
tions of ACM, 46(4):31–33, April 2003.

J. Nielson. Usability Engineering. Academic Press, November 1994.
NIST. Secure hash standard. Technical Report FIPS PUB 180-1, US Department

of Commerce/NIST, Washington D. C., United Stats, April 1995.
J. Park and R. Sandhu. The UCONABC usage control model. ACM Transactions

on Information and System Security, 7(1):128–174, February 2004.
D. Parrott. Requirements for a rights data dictionary and rights expression lan-

guage. Technical Report version 1.0, Reuters Ltd., 85 Fleet St., London EC4P
4AJ, June 2001. In response to ISO/IEC JTC1/SC29/WG11 N4044: “Reis-
sue of the Call for Requirements for a Rights Data Dictionary and a Rights
Expression Language” – MPEG-21.

S. Pearson, B. Balacheff, L. Chen, D. Plaqui, and G. Proudler. Trusted Computing
Platforms – TCPA Technology in Context. Prentice Hall PTR, Upper Saddle
River, New Jersey 07458 United States, 2003.

F. Pestoni and C. Drews. eXtensbile Content Protection. In Proceedings of
the 11th ACM International Conference on Multimedia, pages 458–459. ACM
Press, 2003.

F. Pestoni, J. B. Lotspiech, and S. Nusser. xCP: Peer-to-peer content protection.
IEEE Signal Processing Magazine, 21(2):71–81, March 2004.

R. Pucella and V. Weissman. A logic for reasoning about digital rights. In IEEE
Proceedings of the Computer Security Foundations Workshop, pages 282–294,
Cape Breton, Nova Scotia, Canada, June 2002. IEEE Computer Society Press.

J. R. Rao, P. Rohatgi, H. Scherzer, and S. Tinguely. Partitioning attacks: Or how
to rapidly clone some gsm cards. In Proceedings of the 2002 IEEE Symposium
on Security and Privacy, pages 31–42. IEEE Computer Society, May 2002.

S. Ravi, A. Raghunathan, and S. Chakradhar. Tamper resistance mechanisms for
secure embedded systems. In IEEE International Conference on VLSI Design,
pages 605–614. IEEE Publisher, January 2004.

B. Rosenblatt and G. Dykstra. Integrating content management with digital
rights management: Imperatives and opportunities for digital content lifecy-

222 EXPERIMENTS IN RIGHTS CONTROL

BIBLIOGRAPHY

cles. GiantSteps Media Technology Strategies, page 21 pages, May 2002. URL
http://www.giantstepsmts.com/drm-cm white paper.htm.

B. Rosenblatt, B. Trippe, and S. Mooney. Digital Rights Management: Business
and Technology. John Wiley & Sons, New York, United States, November
2002.

J. M. Rushby. Design and verification of secure systems. In Proceedings of the
eighth ACM symposium on Operating Systems Principles, pages 12–21. ACM
Press, 1981. ISBN 0-89791-062-1.

P. Samuelson. Digital rights management {and,or,vs.} the law. Communications
of ACM, 46(4):41–45, April 2003.

R. Sandhu. The typed access matrix model. In Proceedings of the IEEE Sympo-
sium on Security and Privacy, pages 122–136, 1992.

R. Sandhu. Good-enough security: Towards a pragmatic business-driven disci-
pline. IEEE Internet Computing, pages 66–68, January, February 2003.

R. Sandhu and J. Park. Towards usage control models: beyond traditional access
control. In 7th ACM Symposium on Access Control Models and Technologies
(SACMAT 2002), pages 57–64. ACM, June 2002.

R. Sandhu and J. Park. Usage control: A vision for next generation access control.
In V. Gorodetsky, L. J. Popyack, and V. A. Skormin, editors, Computer Net-
work Security, 2nd International Workshop on Mathematical Methods, Mod-
els, and Architectures for Computer Network Security (MMM-ACNS’03), vol-
ume 2776 of LNCS, pages 17–31. Springer-Verlag, September 2003.

R. Sandhu and P. Samarati. Access control: Principles and practice. IEEE Com-
munications Magazine, 32(9):40–48, September 1994.

B. Schneier. Description of a new variable-length key, 64-bit block cipher (blow-
fish). In Fast Software Encryption, Cambridge Security Workshop Proceed-
ings, pages 191–204. Springer-Verlag, December 1994.

B. Schneier. Applied Cryptography, Second Edition, chapter 15, pages 357–368.
John Wiley & Sons, Inc., 1996.

B. Schneier. Secrets and Lies. John Willey & Sons Inc, 2000.
B. Schneier and J. Kelsey. Cryptographic support for secure logs on untrusted

machines. In The 7th USENIX Security Symposium Proceedings, pages 53–
62. USENIX Press, January 1998.

B. Schneier and J. Kelsey. Secure audit logs to support computer forensics. In
ACM Transactions on Information and System Security, volume 2, pages 159–
176. ACM Press, May 1999.

EXPERIMENTS IN RIGHTS CONTROL 223

BIBLIOGRAPHY

D. Sellars. An introduction to steganography. Technical report, University of
Cape Town, Computer Science, May 1999. URL http://www.dsse.ecs.

soton.ac.uk/techreports/99-4.html.
M. J. Sergot, F. Sadri, R. A. Kowalski, F. Kriwaczek, P. Hammond, and H. T.

Cory. The british nationality act as a logic program. Communications ACM,
29(5):370–386, May 1986.

W. Shapiro and R. Vingralek. How to manage persistent state in DRM sys-
tems. In Proceedings of the ACM Workshop in Security and Privacy in
Digital Rights Management, pages 176–191, November 2001. URL http:

//www.star-lab.com/sander/spdrm/papers.html.
C. Shi and B. Bhargava. A fast MPEG video encryption algorithm. In Proceed-

ings of the 6th ACM International Conference on Multimedia, pages 81–88,
Bristol, United Kingdom, 1998. ACM Press.

N. Shivakumar and H. Garcia-Molina. Building a scalable and accurate copy
detection mechanism. In Proceedings of the 1st ACM International Conference
on Digital Libraries, pages 160–168. ACM Press, March 1996.

O. Silbert, D. Bernstein, and D. van Wie. Digibox: A self-protecting container
for information commerce. In Proceedings of the First USENIX Workshop on
Electronic Commerce, pages 171–184, July 1995. URL http://citeseer.

nj.nec.com/sibert95digibox.html.
L. Sterling and E. Shapiro. The Art of Prolog (Second Edition), chapter 17, pages

319–357. The MIT Press, Cambridge, Massachusetts 02142, Uniter States,
1994.

S.A.F.A. van den Heuvel, W. Jonker, F.L.A.J. Kamperman, and P.J. Lenoir.
Secure content management in authorised domains. In Int. Broadcasting
Convention (IBC), pages 467–474, Amsterdam, The Netherlands, September
2002. Broadcastpapers Pty Ltd, PO Box 259, Darlinghurst, NSW, 1300, AUS-
TRALIA.

S. Voloshynovskiy, S. Pereira, T. Pun, J. Eggers, and J. Su. Attacks on digital wa-
termarks: Classification, estimation-based attacks and benchmarks. In IEEE
Communications Magazine (Special Issue on Digital Watermarking for Copy-
right Protection: a communications perspective), volume 39, pages 118–127.
IEEE Press, 2001. M. Barni, F. Bartolini, I.J. Cox, J. Hernandez, F. Pérez-
González, Guest Eds. Invited paper.

S. Wald. Secure media consumption in a Ubicomp World. In Workshop on
Security in Ubiquitous Computing (UBICOMP’02), page Paper 10, September
2002. URL http://www.teco.edu/∼philip/ubicomp2002ws/.

224 EXPERIMENTS IN RIGHTS CONTROL

BIBLIOGRAPHY

A. Whitten and J. D. Tygar. Why johnny can’t encrypt: A usability evaluation of
pgp 5.0. In Proceedings of 8th USENIX Security Symposium, pages 169–184.
USENIX, August 1999.

WIBU. CodeMeter Developer’s Guide. WIBU-SYSTMES AG, Rueppurrer
Str.53-54 76137 Karlsruhe, Germany, 1.0 edition, November 2003.

S-J. Yang and H-C. Chou. Adaptive QoS parameters approach to modelling In-
ternet performance. International Journal of Network Management, 13:69–82,
2003.

Ka-Ping Yee. User interaction design for secure systems. In Proceedings of 4th
International Conference on Information and Communications Security, pages
278–290. Springer-Verlag, 2002.

EXPERIMENTS IN RIGHTS CONTROL 225

INDEX

AA, see attribute authority
access control, 5, 12–14, 24, 28,

29, 31, 32, 60, 72, 101
discretionary access control,

14, 30
mandatory access control, 14,

32
role-based access control, 14,

32
access control language, 31
access control list, 30
access control matrix, 24, 29–32
ACL, see access control list
ACM, see access control matrix
agent, 140
analog hole, 191
anatomy, 55
attack avoidance, 97
attack detection, 97
attack prevention, 97
attack proof, 98
attack recovery, 97
attribute, 13, 14, 32, 103, 104,

107, 108, 110

attribute authority, 103, 104, 108
attribute certificate, 103–105
audit logging, 79, 80, 82, 98, 143,

144, 146–148, 168
audit trail, 60
authentication, 12, 60, 67, 99, 101,

102, 105, 108, 149
authorization, 13, 14, 60, 99, 101,

102, 108
authorized domain, 36, 37, 44, 52,

141, 207, 210
availability, 158
axiomatic principles, 54, 55

binding, see LicenseScript,binding
business model, 102, 123, 207

CA, see certificate authority
calculating with concept, 124–127,

131, 133
capability, 29, 30
CC, see calculating with concept
CE, see consumer electronic
certificate, 103–105
certificate authority, 103, 104, 108

227

INDEX

CH, see clearing house
clause, see LicenseScript,clause
clearing house, 104, 110
client-server architecture, 145
cloning, 191, 193
CM-Stick, see CodeMeter Stick
code encryption, 96
code obfuscation, 96, 108
CodeMeter Stick, 183, 194, 195,

200
compatibility, 207
complexity, 24
condition, 15, 31, 33, 124
conditional access, 95
conditional access system, 182–

185
confidentiality, 158, 160
constraint, 55, 56, 58, 135

aspect, 58
bound, 58
environment, 58
purpose, 58
status, 58, 72
temporal, 58

consumer electronic, 182, 207, 210
content key, 185, 187, 188, 190,

193, 196–198
content management, 208
content output, 182
content protection, 95, 96, 157,

181, 192, 200, 209
content renderer, 96, 99, 109, 153,

182
content scrambling system, 95
CSS, 95
CoProVe, 170

copy detection, 107
copyright, 29, 78, 79, 208
core root of trust module, 201
cryptographic engine, 99

device, 41, 145, 146, 155, 182,
207

digital content, 2, 11, 12, 28, 95,
102, 104, 107, 110, 111,
144, 157, 158, 188, 205,
207

fancy media, 11
textual media, 11

digital hole, 191, 192, 200, 201
digital license, see license
Digital Property Rights Language,

54
digital rights management, 2, 79,

98, 102–104, 107, 108,
116, 143–145, 151, 157,
158

Digital Transmission Content Pro-
tection, 200

digital versatile disc, 95
DVD, 95
DRM, see digital rights manage-

ment

entity, 126, 127, 131
entity-relationship, 126
excute-only memory, 96
eXtensible Content Protection, 210
eXtensible rights Markup Language,

54
XrML, 36, 50, 53–55, 58, 60, 64,

67, 74

fair use, 6, 77–79, 82, 209

228 EXPERIMENTS IN RIGHTS CONTROL

INDEX

Fair Use Doctrine, 6
Fair Use Doctrine, 81
fingerprinting, 96, 107, 144
firmware, 41
first-order logic, 30, 31
forward integrity, 147
forward secrecy, 147

Gamma notation, 41, 63

hash chain, 147, 153
hash function, 147

IAA, see identification, authenti-
cation, authorization

iButton, 145, 146, 149–152, 154,
156, 159, 171, 173, 175,
183, 194, 195, 198

identification, 60, 99, 101, 102,
108

identity, 103–105, 107
integrity, 60, 103, 144, 158, 160,

167
Internet, 11, 28, 36, 102, 139, 140,

181, 183
interoperability, 207, 210

jugular attack, 191, 193

kernel, 209
key management system, 185
key stream, 181, 187, 190, 199
key tree, 158, 163, 167, 173

license, 21, 33, 36–43, 45, 46, 58,
61, 62, 69, 73, 74, 79,
96, 99, 104, 105, 110, 111,
124, 134, 141, 157, 158,
165, 167

license evolution, 73
license interpreter, 98, 99, 172
LicenseScript, 1, 3, 6, 19, 20, 34,

35, 37, 38, 44, 47, 50–
55, 58, 61, 62, 64, 67,
69, 74, 75, 78, 79, 81,
82, 95, 98, 123, 124, 130,
131, 134, 136, 137, 160,
177, 205

binding, 39, 46, 62–64, 67,
70, 131, 134, 161, 168

clause, 21, 37, 39, 45, 46, 62–
64, 67, 72, 130, 131, 168

content, 39, 62
domain, 40
execution model, 42
identifier, 21
object, 21, 130
primitive, 40, 45, 46, 63, 64,

67, 161
logic programming, 6, 21, 37, 38,

61, 124, 160

MAC, see message authentication
code

matching substitution, 38
message authentication code, 147,

153, 171, 173, 174, 176
messageauthentication code, 153
meta-interpreter, 136, 137, 172
metadata, 158, 160, 207
model, 56, 59

contract, 59, 60
copyright, 60
operational, 59, 60
provision, 59, 60

EXPERIMENTS IN RIGHTS CONTROL 229

INDEX

revenue, 59, 60
security, 60

multiset, 25–27, 38, 39, 41–44,
46, 62, 86, 131, 137

multiset rewriting, 6, 21, 35, 37,
38, 41, 51, 61, 73, 124,
131, 160

non-repudiation, 60

object, 13, 14, 29, 32, 55–57, 62
obligation, 15, 31, 33, 57, 60
offer, 69, 73
Open Digital Rights Language, 54
ODRL, 36, 50, 53–55, 58, 60, 64,

67, 74
operating system, 210
operation, 55–57

packager, 123–126, 134–136, 138
pay flatrate, 46, 60
pay per-use, 46, 47, 60
pay per-view, 102
pay upfront, 46, 47, 60
payment, 33, 46, 104, 136, 158
PayTV, 95, 181, 182, 184, 187,

191, 193
permission, 14, 30
plug-in, 99, 110, 111
policy, 69, 86
predicate, 30, 32
primitive, see LicenseScript,primitive
privacy, 60, 124
private key, 103, 110, 115, 149,

168
Prolog, 21, 31, 37–39, 43, 46, 52,

63, 123–125, 137, 140,
160

protected storage mechanism, 162
protection, 95
public key, 103, 149, 167
public key certificate, see certifi-

cate

query, 38, 62, 63, 134, 137, 161

reference monitor, 13, 99, 161,
167, 172

relation, 56, 58, 126, 127, 131
association, 59
characteristic, 59
explicit, 58
implicit, 58
limitation, 59
naming, 57, 59
ordering, 58

request, 13, 108, 135
residential gateway, 125, 134, 138
restriction, 126, 127, 131
right, 14, 29, 30, 32, 56, 57, 60,

63, 72, 74, 103, 104, 111,
124, 157, 206

administrative right, 20
contract right, 77, 78
delegation right, 20
derivative right, 19, 20
object management, 57
render right, 57
reuse right, 57
reverse right, 20
rights regulation, 57
statutory right, 77–79
transport right, 57
usage right, 12

rights assertion, 79, 80

230 EXPERIMENTS IN RIGHTS CONTROL

INDEX

rights control, 5, 12, 19, 29, 101,
207

rights enforcement, 2, 206
architecture, 98, 206
mechanisms, 2, 95

rights expression language, 1–3,
5, 29, 35, 36, 53, 54, 75,
77, 78, 95, 206

REL, 53–57, 64, 67, 78, 79
rights issuance, 80
rights management, 208
role, 14, 32, 33
rule, 21, 22, 25, 27, 39, 41–44,

46, 62, 63, 73, 74, 130
rule execution, 42

safety, 24
sample bit rate, 197
secret key, 149, 187, 193
secure audio path, 200
secure audit logging, see audit log-

ging
secure perimeter scheme, 143, 144
security model, 24
self-checking code, 96
service, 124, 125
service broker, 123
service brokerage, 123, 124, 140,

141
service provider, 125
session key, 168, 176
set-top-box, 184, 185, 193, 210
side-channel attack, 193
signature, 110
SLD-derivation, 38
SLD-resolution, 38

SM, see streaming mechanism
smart-card, 184, 185, 187, 193
SPIN, 103, 114
statutory right, 79
storage key, 163, 168, 169
streaming, 145, 181, 191
streaming mechanism, 182, 183,

185
streaming theft, 191, 192
subject, 13, 14, 29, 30, 32, 33,

55–57
super distribution, 67, 101, 102,

107, 116

tamper-proof, 96, 209
tamper-resistance, 96, 98, 108, 144,

206
hardware tamper-resistance, 1,

96
software tamper-resistance, 96

tamper-resistant, see tamper-resistance
tamper-resistant hardware, 143, 144,

159, 181, 183
TCP, see trusted computing plat-

form
timestamp, 143, 146, 149, 151–

153
TPM, see trusted computing mod-

ule
trace execution, 44
tracing traitor scheme, 143, 144
trust, 32
trusted computing module, 162
trusted computing platform, 96,

201, 209
trusted platform module, 164, 201

EXPERIMENTS IN RIGHTS CONTROL 231

INDEX

Turing machine, 24

United States Codes, iv, viii, 6,
78

usability, 208, 210
usage control, 5, 12, 14, 29, 33

continuous control, 15
mutability, 15
UCON, 16
UCONABC, 17–19
usage control model, 15

usage control language, 32

wallet, 45, 46, 69, 86
watermarking, 96, 107, 111, 143,

144, 192

XOM, see execute-only memory

232 EXPERIMENTS IN RIGHTS CONTROL

Titles in the Telematica Instituut Fundamental Research
Series
(sse also: http://www.telin.nl/publicaties/frs.htm)

001 G. Henri ter Hofte, Working apart together:
Foundations for component groupware

002 Peter J.H. Hinssen, What difference does it
make? The use of groupware in small groups

003 Daan D. Velthausz, Cost-effective network-
based multimedia information retrieval

004 Lidwien A.M.L. van de Wijngaert, Matching
media: information need and new media choice

005 Roger H.J. Demkes, COMET: A comprehensive
methodology for supporting telematics invest-
ment decisions

006 Olaf Tettero, Intrinsic information security:
Embedding security issues in the design pro-
cess of telematics systems

007 Marike Hettinga, Understanding evolutionary
use of groupware

008 Aart T. van Halteren, Towards an adaptable
QoS aware middleware for distributed objects

009 Maarten Wegdam, Dynamic reconfiguration
and load distribution in component middleware

010 Ingrid J. Mulder, Understanding Designers,
Designing for Understanding

011 Robert Slagter, Dynamic Groupware Services:
Modular Design of Tailorable Groupware

012 Nikolay Diakov, Monitoring Distributed Object
and Component Communication

Titles in the IPA Dissertation Series

J.O. Blanco. The State Operator in Pro-
cess Algebra. Faculty of Mathematics and
Computing Science, TUE. 1996-01

A.M. Geerling. Transformational Devel-
opment of Data-Parallel Algorithms. Fac-
ulty of Mathematics and Computer Sci-
ence, KUN. 1996-02

P.M. Achten. Interactive Functional Pro-
grams: Models, Methods, and Implemen-
tation. Faculty of Mathematics and Com-
puter Science, KUN. 1996-03

M.G.A. Verhoeven. Parallel Local
Search. Faculty of Mathematics and
Computing Science, TUE. 1996-04

M.H.G.K. Kesseler. The Implementa-
tion of Functional Languages on Paral-
lel Machines with Distrib. Memory. Fac-
ulty of Mathematics and Computer Sci-
ence, KUN. 1996-05

D. Alstein. Distributed Algorithms for
Hard Real-Time Systems. Faculty of
Mathematics and Computing Science,
TUE. 1996-06

J.H. Hoepman. Communication, Syn-
chronization, and Fault-Tolerance. Fac-
ulty of Mathematics and Computer Sci-
ence, UvA. 1996-07

H. Doornbos. Reductivity Arguments and
Program Construction. Faculty of Math-
ematics and Computing Science, TUE.
1996-08

D. Turi. Functorial Operational Seman-
tics and its Denotational Dual. Faculty
of Mathematics and Computer Science,
VUA. 1996-09

A.M.G. Peeters. Single-Rail Handshake
Circuits. Faculty of Mathematics and
Computing Science, TUE. 1996-10

N.W.A. Arends. A Systems Engineering
Specification Formalism. Faculty of Me-
chanical Engineering, TUE. 1996-11

P. Severi de Santiago. Normalisation in
Lambda Calculus and its Relation to Type
Inference. Faculty of Mathematics and
Computing Science, TUE. 1996-12

D.R. Dams. Abstract Interpretation and
Partition Refinement for Model Checking.
Faculty of Mathematics and Computing
Science, TUE. 1996-13

M.M. Bonsangue. Topological Dualities
in Semantics. Faculty of Mathematics and
Computer Science, VUA. 1996-14

B.L.E. de Fluiter. Algorithms for Graphs
of Small Treewidth. Faculty of Mathemat-
ics and Computer Science, UU. 1997-01

W.T.M. Kars. Process-algebraic Trans-
formations in Context. Faculty of Com-
puter Science, UT. 1997-02

P.F. Hoogendijk. A Generic Theory of
Data Types. Faculty of Mathematics and
Computing Science, TUE. 1997-03

T.D.L. Laan. The Evolution of Type The-
ory in Logic and Mathematics. Faculty
of Mathematics and Computing Science,
TUE. 1997-04

C.J. Bloo. Preservation of Termination
for Explicit Substitution. Faculty of Math-
ematics and Computing Science, TUE.
1997-05

J.J. Vereijken. Discrete-Time Process Al-
gebra. Faculty of Mathematics and Com-
puting Science, TUE. 1997-06

F.A.M. van den Beuken. A Functional
Approach to Syntax and Typing. Faculty

of Mathematics and Informatics, KUN.
1997-07

A.W. Heerink. Ins and Outs in Refusal
Testing. Faculty of Computer Science,
UT. 1998-01

G. Naumoski and W. Alberts. A
Discrete-Event Simulator for Systems En-
gineering. Faculty of Mechanical Engi-
neering, TUE. 1998-02

J. Verriet. Scheduling with Communi-
cation for Multiprocessor Computation.
Faculty of Mathematics and Computer
Science, UU. 1998-03

J.S.H. van Gageldonk. An Asynchronous
Low-Power 80C51 Microcontroller. Fac-
ulty of Mathematics and Computing Sci-
ence, TUE. 1998-04

A.A. Basten. In Terms of Nets: System
Design with Petri Nets and Process Alge-
bra. Faculty of Mathematics and Com-
puting Science, TUE. 1998-05

E. Voermans. Inductive Datatypes with
Laws and Subtyping – A Relational
Model. Faculty of Mathematics and Com-
puting Science, TUE. 1999-01

H. ter Doest. Towards Probabilistic
Unification-based Parsing. Faculty of
Computer Science, UT. 1999-02

J.P.L. Segers. Algorithms for the Sim-
ulation of Surface Processes. Faculty
of Mathematics and Computing Science,
TUE. 1999-03

C.H.M. van Kemenade. Recombinative
Evolutionary Search. Faculty of Mathe-
matics and Natural Sciences, UL. 1999-
04

E.I. Barakova. Learning Reliability: a
Study on Indecisiveness in Sample Selec-
tion. Faculty of Mathematics and Natural
Sciences, RUG. 1999-05

M.P. Bodlaender. Scheduler Optimiza-
tion in Real-Time Distributed Databases.
Faculty of Mathematics and Computing
Science, TUE. 1999-06

M.A. Reniers. Message Sequence Chart:
Syntax and Semantics. Faculty of Math-
ematics and Computing Science, TUE.
1999-07

J.P. Warners. Nonlinear approaches to
satisfiability problems. Faculty of Math-
ematics and Computing Science, TUE.
1999-08

J.M.T. Romijn. Analysing Industrial
Protocols with Formal Methods. Faculty
of Computer Science, UT. 1999-09

P.R. D’Argenio. Algebras and Automata
for Timed and Stochastic Systems. Fac-
ulty of Computer Science, UT. 1999-10

G. Fábián. A Language and Simulator
for Hybrid Systems. Faculty of Mechani-
cal Engineering, TUE. 1999-11

J. Zwanenburg. Object-Oriented Con-
cepts and Proof Rules. Faculty of Math-
ematics and Computing Science, TUE.
1999-12

R.S. Venema. Aspects of an Integrated
Neural Prediction System. Faculty of
Mathematics and Natural Sciences, RUG.
1999-13

J. Saraiva. A Purely Functional Imple-
mentation of Attribute Grammars. Fac-
ulty of Mathematics and Computer Sci-
ence, UU. 1999-14

R. Schiefer. Viper, A Visualisation Tool
for Parallel Program Construction. Fac-
ulty of Mathematics and Computing Sci-
ence, TUE. 1999-15

K.M.M. de Leeuw. Cryptology and
Statecraft in the Dutch Republic. Faculty
of Mathematics and Computer Science,
UvA. 2000-01

T.E.J. Vos. UNITY in Diversity. A strat-
ified approach to the verification of dis-
tributed algorithms. Faculty of Mathe-
matics and Computer Science, UU. 2000-
02

W. Mallon. Theories and Tools for the
Design of Delay-Insensitive Communicat-
ing Processes. Faculty of Mathematics
and Natural Sciences, RUG. 2000-03

W.O.D. Griffioen. Studies in Computer
Aided Verification of Protocols. Faculty
of Science, KUN. 2000-04

P.H.F.M. Verhoeven. The Design of the
MathSpad Editor. Faculty of Mathemat-
ics and Computing Science, TUE. 2000-
05

J. Fey. Design of a Fruit Juice Blending
and Packaging Plant. Faculty of Mechan-
ical Engineering, TUE. 2000-06

M. Franssen. Cocktail: A Tool for Deriv-
ing Correct Programs. Faculty of Math-
ematics and Computing Science, TUE.
2000-07

P.A. Olivier. A Framework for Debug-
ging Heterogeneous Applications. Fac-
ulty of Natural Sciences, Mathematics
and Computer Science, UvA. 2000-08

E. Saaman. Another Formal Specifica-
tion Language. Faculty of Mathematics
and Natural Sciences, RUG. 2000-10

M. Jelasity. The Shape of Evolution-
ary Search Discovering and Representing
Search Space Structure. Faculty of Math-
ematics and Natural Sciences, UL. 2001-
01

R. Ahn. Agents, Objects and Events
a computational approach to knowledge,
observation and communication. Faculty
of Mathematics and Computing Science,
TU/e. 2001-02

M. Huisman. Reasoning about Java pro-
grams in higher order logic using PVS
and Isabelle. Faculty of Science, KUN.
2001-03

I.M.M.J. Reymen. Improving Design
Processes through Structured Reflection.
Faculty of Mathematics and Computing
Science, TU/e. 2001-04

S.C.C. Blom. Term Graph Rewriting:
syntax and semantics. Faculty of Sci-
ences, Division of Mathematics and Com-
puter Science, VUA. 2001-05

R. van Liere. Studies in Interactive
Visualization. Faculty of Natural Sci-
ences, Mathematics and Computer Sci-
ence, UvA. 2001-06

A.G. Engels. Languages for Analysis
and Testing of Event Sequences. Faculty
of Mathematics and Computing Science,
TU/e. 2001-07

J. Hage. Structural Aspects of Switching
Classes. Faculty of Mathematics and Nat-
ural Sciences, UL. 2001-08

M.H. Lamers. Neural Networks for
Analysis of Data in Environmental Epi-
demiology: A Case-study into Acute Ef-
fects of Air Pollution Episodes. Faculty of
Mathematics and Natural Sciences, UL.
2001-09

T.C. Ruys. Towards Effective Model
Checking. Faculty of Computer Science,
UT. 2001-10

D. Chkliaev. Mechanical verification of
concurrency control and recovery proto-

cols. Faculty of Mathematics and Com-
puting Science, TU/e. 2001-11

M.D. Oostdijk. Generation and presen-
tation of formal mathematical documents.
Faculty of Mathematics and Computing
Science, TU/e. 2001-12

A.T. Hofkamp. Reactive machine con-
trol: A simulation approach using χ. Fac-
ulty of Mechanical Engineering, TU/e.
2001-13

D. Bošnački. Enhancing state space re-
duction techniques for model checking.
Faculty of Mathematics and Computing
Science, TU/e. 2001-14

M.C. van Wezel. Neural Networks for
Intelligent Data Analysis: theoretical and
experimental aspects. Faculty of Mathe-
matics and Natural Sciences, UL. 2002-
01

V. Bos and J.J.T. Kleijn. Formal Spec-
ification and Analysis of Industrial Sys-
tems. Faculty of Mathematics and Com-
puter Science and Faculty of Mechanical
Engineering, TU/e. 2002-02

T. Kuipers. Techniques for Understand-
ing Legacy Software Systems. Faculty of
Natural Sciences, Mathematics and Com-
puter Science, UvA. 2002-03

S.P. Luttik. Choice Quantification in
Process Algebra. Faculty of Natural Sci-
ences, Mathematics, and Computer Sci-
ence, UvA. 2002-04

R.J. Willemen. School Timetable Con-
struction: Algorithms and Complexity.
Faculty of Mathematics and Computer
Science, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est: Ver-
ification of Probabilistic, Real-time and

Parametric Systems. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, KUN. 2002-06

N. van Vugt. Models of Molecular Com-
puting. Faculty of Mathematics and Nat-
ural Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius, Melius: Guid-
ing and Cost-Optimality in Model Check-
ing of Timed and Hybrid Systems. Fac-
ulty of Science, Mathematics and Com-
puter Science, KUN. 2002-08

R. van Stee. On-line Scheduling and
Bin Packing. Faculty of Mathematics and
Natural Sciences, UL. 2002-09

D. Tauritz. Adaptive Information Filter-
ing: Concepts and Algorithms. Faculty of
Mathematics and Natural Sciences, UL.
2002-10

M.B. van der Zwaag. Models and Log-
ics for Process Algebra. Faculty of Natu-
ral Sciences, Mathematics, and Computer
Science, UvA. 2002-11

J.I. den Hartog. Probabilistic Extensions
of Semantical Models. Faculty of Sci-
ences, Division of Mathematics and Com-
puter Science, VUA. 2002-12

L. Moonen. Exploring Software Systems.
Faculty of Natural Sciences, Mathemat-
ics, and Computer Science, UvA. 2002-
13

J.I. van Hemert. Applying Evolution-
ary Computation to Constraint Satisfac-
tion and Data Mining. Faculty of Math-
ematics and Natural Sciences, UL. 2002-
14

S. Andova. Probabilistic Process Alge-
bra. Faculty of Mathematics and Com-
puter Science, TU/e. 2002-15

Y.S. Usenko. Linearization in µCRL.
Faculty of Mathematics and Computer
Science, TU/e. 2002-16

J.J.D. Aerts. Random Redundant Storage
for Video on Demand. Faculty of Math-
ematics and Computer Science, TU/e.
2003-01

M. de Jonge. To Reuse or To Be Reused:
Techniques for component composition
and construction. Faculty of Natural Sci-
ences, Mathematics, and Computer Sci-
ence, UvA. 2003-02

J.M.W. Visser. Generic Traversal over
Typed Source Code Representations. Fac-
ulty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2003-03

S.M. Bohte. Spiking Neural Networks.
Faculty of Mathematics and Natural Sci-
ences, UL. 2003-04

T.A.C. Willemse. Semantics and Ver-
ification in Process Algebras with Data
and Timing. Faculty of Mathematics and
Computer Science, TU/e. 2003-05

S.V. Nedea. Analysis and Simulations
of Catalytic Reactions. Faculty of Math-
ematics and Computer Science, TU/e.
2003-06

M.E.M. Lijding. Real-time Scheduling
of Tertiary Storage. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2003-07

H.P. Benz. Casual Multimedia Process
Annotation – CoMPAs. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2003-08

D. Distefano. On Modelchecking the
Dynamics of Object-based Software: a
Foundational Approach. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2003-09

M.H. ter Beek. Team Automata – A For-
mal Approach to the Modeling of Col-
laboration Between System Components.
Faculty of Mathematics and Natural Sci-
ences, UL. 2003-10

D.J.P. Leijen. The λ Abroad – A Func-
tional Approach to Software Components.
Faculty of Mathematics and Computer
Science, UU. 2003-11

W.P.A.J. Michiels. Performance Ratios
for the Differencing Method. Faculty
of Mathematics and Computer Science,
TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs and
Terms and Their Use in Interactive Theo-
rem Proving. Faculty of Mathematics and
Computer Science, TU/e. 2004-02

P. Frisco. Theory of Molecular Com-
puting – Splicing and Membrane systems.
Faculty of Mathematics and Natural Sci-
ences, UL. 2004-03

S. Maneth. Models of Tree Translation.
Faculty of Mathematics and Natural Sci-
ences, UL. 2004-04

Y. Qian. Data Synchronization and
Browsing for Home Environments. Fac-
ulty of Mathematics and Computer Sci-
ence and Faculty of Industrial Design,
TU/e. 2004-05

F. Bartels. On Generalised Coinduction
and Probabilistic Specification Formats.
Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA.
2004-06

L. Cruz-Filipe. Constructive Real Analy-
sis: a Type-Theoretical Formalization and
Applications. Faculty of Science, Math-
ematics and Computer Science, KUN.
2004-07

E.H. Gerding. Autonomous Agents in
Bargaining Games: An Evolutionary In-
vestigation of Fundamentals, Strategies,
and Business Applications. Faculty of
Technology Management, TU/e. 2004-08

N. Goga. Control and Selection Tech-
niques for the Automated Testing of Reac-
tive Systems. Faculty of Mathematics and
Computer Science, TU/e. 2004-09

M. Niqui. Formalising Exact Arith-
metic: Representations, Algorithms and
Proofs. Faculty of Science, Mathematics
and Computer Science, RU. 2004-10

A. Löh. Exploring Generic Haskell. Fac-
ulty of Mathematics and Computer Sci-
ence, UU. 2004-11

I.C.M. Flinsenberg. Route Planning Al-
gorithms for Car Navigation. Faculty
of Mathematics and Computer Science,
TU/e. 2004-12

R.J. Bril. Real-time Scheduling for
Media Processing Using Conditionally
Guaranteed Budgets. Faculty of Math-
ematics and Computer Science, TU/e.
2004-13

J. Pang. Formal Verification of Dis-
tributed Systems. Faculty of Sciences, Di-
vision of Mathematics and Computer Sci-
ence, VUA. 2004-14

F. Alkemade. Evolutionary Agent-Based
Economics. Faculty of Technology Man-
agement, TU/e. 2004-15

E.O. Dijk. Indoor Ultrasonic Position
Estimation Using a Single Base Station.

Faculty of Mathematics and Computer
Science, TU/e. 2004-16

S.M. Orzan. On Distributed Verification
and Verified Distribution. Faculty of Sci-
ences, Division of Mathematics and Com-
puter Science, VUA. 2004-17

M.M. Schrage. Proxima - A
Presentation-oriented Editor for Struc-
tured Documents. Faculty of Mathemat-
ics and Computer Science, UU. 2004-18

E. Eskenazi and A. Fyukov. Quan-
titative Prediction of Quality Attributes
for Component-Based Software Architec-
tures. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-19

P.J.L. Cuijpers. Hybrid Process Alge-
bra. Faculty of Mathematics and Com-
puter Science, TU/e. 2004-20

N.J.M. van den Nieuwelaar. Super-
visory Machine Control by Predictive-
Reactive Scheduling. Faculty of Mechan-
ical Engineering, TU/e. 2004-21

E. Ábrahám. An Assertional Proof Sys-
tem for Multithreaded Java -Theory and
Tool Support- . Faculty of Mathematics
and Natural Sciences, UL. 2005-01

R. Ruimerman. Modeling and Remodel-
ing in Bone Tissue. Faculty of Biomedical
Engineering, TU/e. 2005-02

C.N. Chong. Experiments in Rights Con-
trol - Expression and Enforcement. Fac-
ulty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2005-03

